| 注册
首页|期刊导航|山东电力技术|基于ERGAN和BO-BiGRU的变电站高压开关柜凝露临界温度预测

基于ERGAN和BO-BiGRU的变电站高压开关柜凝露临界温度预测

王鹏飞 陈雪 李继宇 陈大才 蔡旺昕 赖举添

山东电力技术2025,Vol.52Issue(9):87-95,9.
山东电力技术2025,Vol.52Issue(9):87-95,9.DOI:10.20097/j.cnki.issn1007-9904.2025.09.009

基于ERGAN和BO-BiGRU的变电站高压开关柜凝露临界温度预测

Predicting Condensation Critical Temperature of High-voltage Switchgear in Substation Based on ERGAN and BO-BiGRU

王鹏飞 1陈雪 1李继宇 1陈大才 1蔡旺昕 1赖举添1

作者信息

  • 1. 国网福建省电力有限公司经济技术研究院,福建 福州 350013
  • 折叠

摘要

Abstract

As the core electrical equipment in the power system,the high-voltage switchgear in substations is affected by the climate of southern China,leading to equipment malfunction or refusal to operate.The intricate mechanism of moisture condensation poses challenges in predicting the critical temperature of condensation,resulting in low modeling accuracy and a lack of condensation samples.To tackle these challenges,a prediction method for the critical condensation temperature of high-voltage switchgear in substation is proposed,based on enhanced relative generative adversarial networks(ERGAN)and Bayesian optimization bidirectional gated recurrent unit(BO-BiGRU)networks.This method aims to improve the prediction accuracy of the condensation critical temperature of high-voltage switchgear.Firstly,to address the scarcity of condensation samples,ERGAN is designed to expand the training samples.This model introduces a relative loss function and a gradient penalty term,and utilizes one-dimensional convolutional layers and spectral normalization layers to reconstruct the generator and discriminator,effectively improving the quality of generated samples and training stability.Secondly,Bayesian optimization is employed to iteratively optimize the hyperparameters of BiGRU model,constructing BO-BiGRU model to predict the critical value of condensation.Finally,real-world data from 35 kV high-voltage switchgear in substation in Fujian are used for simulation verification.Simulation results indicate that,taking the mean absolute error as an example,the prediction performance of the proposed method is 68.95%higher than that of model-driven methods,laying a foundation for the prevention and control of condensation in high-voltage switchgear in substations.

关键词

变电站高压开关柜/临界温度预测/ERGAN/贝叶斯优化方法/双向循环门控单元

Key words

high-voltage switchgear in substation/critical temperature prediction/ERGAN/Bayesian optimization method/bidirectional gated recurrent unit

分类

信息技术与安全科学

引用本文复制引用

王鹏飞,陈雪,李继宇,陈大才,蔡旺昕,赖举添..基于ERGAN和BO-BiGRU的变电站高压开关柜凝露临界温度预测[J].山东电力技术,2025,52(9):87-95,9.

基金项目

国家自然科学基金项目(72401182) (72401182)

国网福建省电力公司经济技术研究院自主研发项目(SGFJJY00XLJS2400112). National Key Research and Development Program of China(72401182) (SGFJJY00XLJS2400112)

Independent Research and Development Project of State Grid Fujian Economic Research Institute(SGFJJY00XLJS2400112). (SGFJJY00XLJS2400112)

山东电力技术

1007-9904

访问量0
|
下载量0
段落导航相关论文