| 注册
首页|期刊导航|生物医学工程研究|基于柯氏音时相分类的血压测量方法

基于柯氏音时相分类的血压测量方法

寇文逸 李世龙 蒋志宇 李莉 赵启军 潘帆

生物医学工程研究2025,Vol.44Issue(4):221-228,237,9.
生物医学工程研究2025,Vol.44Issue(4):221-228,237,9.DOI:10.19529/j.cnki.1672-6278.2025.04.04

基于柯氏音时相分类的血压测量方法

Blood pressure measurement based on temporal phase classification of Korotkoff sound

寇文逸 1李世龙 1蒋志宇 1李莉 2赵启军 3潘帆1

作者信息

  • 1. 四川大学 电子信息学院,成都 610065
  • 2. 四川大学华西第二医院 儿童心血管科,成都 610041
  • 3. 四川大学 计算机学院,成都 610065
  • 折叠

摘要

Abstract

To enhance blood pressure measurement accuracy,we proposed a Korotkoff sound phase classification model based on deep learning,and designed a blood pressure measurement method based on Korotkoff sound phase classification.Firstly,369 pieces of Korotkoff sound data from 102 healthy volunteers were collected,and manual auscultation was used to label different time phases.Sec-ondly,the log-mel spectrogram and Hilbert envelope features of the Korotkoff sound signal were extracted,and combined with ResNet18,convolutional block attention module(CBAM),bidirectional long short-term memory network(BiLSTM)and multi-head self-attention module,the features of the Korotkoff sound signal were fully learned.Finally,on the basis of the Korotkoff sound phase classi-fication,blood pressure measurement was completed.The experimental results showed that the average classification accuracy of the Korotkoff sound phase reached 88.9%.The blood pressure measurement method in the research met the A-level standard set by the British Society of Hypertension(BHS)under the four blood pressure measurement standards,and the intraclass correlation coefficient(ICC)was greater than 0.95,providing reference significance for the research of automatic blood pressure measurement methods.

关键词

柯氏音/血压测量/多模态特征融合/深度学习/注意力机制

Key words

Korotkoff sound/Blood pressure measurement/Multimodal feature fusion/Deep learning/Attention mechanism

分类

医药卫生

引用本文复制引用

寇文逸,李世龙,蒋志宇,李莉,赵启军,潘帆..基于柯氏音时相分类的血压测量方法[J].生物医学工程研究,2025,44(4):221-228,237,9.

基金项目

国家自然科学基金项目(62066042) (62066042)

四川省重点研发项目(2024YFFK0051). (2024YFFK0051)

生物医学工程研究

1672-6278

访问量0
|
下载量0
段落导航相关论文