| 注册
首页|期刊导航|生物医学工程研究|针对医学大视觉语言模型的去偏见方法

针对医学大视觉语言模型的去偏见方法

王文浩 韩忠义 王斌 吴慎京 魏本征

生物医学工程研究2025,Vol.44Issue(4):229-237,9.
生物医学工程研究2025,Vol.44Issue(4):229-237,9.DOI:10.19529/j.cnki.1672-6278.2025.04.05

针对医学大视觉语言模型的去偏见方法

Debiasing method for large vision-language models in the medical domain

王文浩 1韩忠义 2王斌 1吴慎京 1魏本征1

作者信息

  • 1. 山东中医药大学 医学人工智能研究中心,青岛 266112||山东中医药大学 青岛中医药科学院,青岛 266112||青岛市中医人工智能技术重点实验室,青岛 266112
  • 2. 阿卜杜拉国王科技大学生成式人工智能卓越中心,图沃 23955-6900
  • 折叠

摘要

Abstract

To address the bias issues caused by uneven data distribution in large vision-language models(LVLMs)for medical auxiliary diagnosis,we proposed a universal medical debiasing method called bias fairness enhancement(BFE).The effectiveness of BFE in mitigating bias was validated by constructing a benchmark to evaluate bias issues in medical LVLMs.This benchmark coverd bi-nary classification,multi-classification,and open-ended question tasks,while incorporating two parameters that control output ran-domness to ensure the method's generality.Experimental results demonstrated that BFE outperformed other mainstream debiasing meth-ods in the medical LVLMs(LLaVA-Med,SkinGPT).Notably,in open-ended medical question-answering tasks,LLaVA-Med's per-formance improved by 6.3%(cd_beta=0.1)and 6.7%(cd_beta=0.5).These findings indicate that BFE can effectively alleviate bias in medical LVLMs,and provide significant support for improving the accuracy and reliability of medical auxiliary diagnosis.

关键词

大视觉语言模型/去偏见算法/医学辅助诊断/偏见问题/对比学习

Key words

Large vision-language models/Debiasing algorithms/Medical assisted diagnosis/Bias issues/Contrastive learning

分类

医药卫生

引用本文复制引用

王文浩,韩忠义,王斌,吴慎京,魏本征..针对医学大视觉语言模型的去偏见方法[J].生物医学工程研究,2025,44(4):229-237,9.

基金项目

国家自然科学基金项目(62372280,62402297) (62372280,62402297)

山东省自然科学基金项目(2024MF139,2023QF094) (2024MF139,2023QF094)

青岛市科技惠民示范专项(23-2-8-smjk-2-nsh). (23-2-8-smjk-2-nsh)

生物医学工程研究

1672-6278

访问量1
|
下载量0
段落导航相关论文