| 注册
首页|期刊导航|综合智慧能源|基于核极限学习机的城市电网信息物理系统安全态势预警

基于核极限学习机的城市电网信息物理系统安全态势预警

许傲 王子月 徐俊俊 周宪

综合智慧能源2025,Vol.47Issue(9):18-27,10.
综合智慧能源2025,Vol.47Issue(9):18-27,10.DOI:10.3969/j.issn.2097-0706.2025.09.003

基于核极限学习机的城市电网信息物理系统安全态势预警

Early warning of security situation for cyber-physical systems of urban power grids based on kernel extreme learning machine

许傲 1王子月 1徐俊俊 1周宪2

作者信息

  • 1. 南京邮电大学 自动化学院,南京 210023||南京邮电大学 人工智能学院,南京 210023
  • 2. 国网江苏省电力有限公司泰州供电分公司,江苏 泰州 225300
  • 折叠

摘要

Abstract

Timely early warning of security situation in cyber-physical systems(CPS)of urban power grids is critical for ensuring safe and stable operation.To address the early-warning challenges for the operational status of CPS under multiple disturbances,a security situation early warning method based on kernel extreme learning machine(KELM)was proposed.A coupling model of the physical and information layers of the power grid was established by integrating cellular automata theory,and the mechanism of cross-space risk propagation was analyzed;An ensemble KELM early warning model was developed,in which multidimensional data were deeply integrated through radial basis function kernel mapping,and prediction accuracy was enhanced by the ensemble structure;An early warning indicator system was established,and indicator weights were dynamically allocated using the entropy weight method to classify early warning levels of security situation.Simulation experiments based on the IEEE 33-bus distribution network demonstrated that,under distributed generation integration scenarios,the proposed method achieved a 12.49%reduction in mean squared error of voltage fluctuation prediction compared to traditional extreme learning machine methods,verifying the efficiency and robustness of the model.

关键词

城市电网信息物理系统/安全态势预警/风险跨空间传播/元胞自动机/核极限学习机

Key words

cyber-physical system of urban power grid/security situation early warning/cross-space risk propagation/cellular automata/kernel extreme learning machine

分类

信息技术与安全科学

引用本文复制引用

许傲,王子月,徐俊俊,周宪..基于核极限学习机的城市电网信息物理系统安全态势预警[J].综合智慧能源,2025,47(9):18-27,10.

基金项目

国家自然科学基金项目(52107101)National Natural Science Foundation of China(52107101) (52107101)

综合智慧能源

2097-0706

访问量0
|
下载量0
段落导航相关论文