| 注册
首页|期刊导航|综合智慧能源|基于模态二次分解和OOA-CNN-BiLSTM-Attention的光伏发电功率组合预测

基于模态二次分解和OOA-CNN-BiLSTM-Attention的光伏发电功率组合预测

李祯 杨国华 张元曦 马鑫 杨娜 刘浩睿 马龙腾

综合智慧能源2025,Vol.47Issue(9):28-37,10.
综合智慧能源2025,Vol.47Issue(9):28-37,10.DOI:10.3969/j.issn.2097-0706.2025.09.004

基于模态二次分解和OOA-CNN-BiLSTM-Attention的光伏发电功率组合预测

Hybrid prediction of photovoltaic power generation based on modal secondary decomposition and OOA-CNN-BiLSTM-Attention

李祯 1杨国华 1张元曦 1马鑫 1杨娜 1刘浩睿 1马龙腾1

作者信息

  • 1. 宁夏大学 电子与电气工程学院,银川 750021
  • 折叠

摘要

Abstract

Due to the intermittency and instability of solar radiation,photovoltaic(PV)power generation shows high randomness and fluctuation,posing challenges to the stable operation of power grids.To improve prediction accuracy,the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)was applied to decompose PV power data into intrinsic mode functions(IMFs)with different frequencies.These IMFs were clustered using K-means based on sample entropy,categorizing into high-,medium-,and low-frequency components.The high-frequency components were further decomposed using variational mode decomposition(VMD)for refined analysis.A hybrid deep learning prediction model was established by integrating convolutional neural network(CNN),bidirectional long short-term memory(BiLSTM)network,and attention mechanism.The osprey optimization algorithm(OOA)was employed to optimize the model's hyperparameters.The experimental results showed that the proposed hybrid prediction model based on modal secondary decomposition and OOA-CNN-BiLSTM-Attention achieved a root mean square error of 4.11 kW,a mean absolute error of 2.88 kW,a mean absolute percentage error of 3.08%,and a coefficient of determination of 98.89%,outperforming other models.It is demonstrated that the proposed method effectively captures the multi-scale features of PV power generation with strong generalization ability and application potential.

关键词

光伏功率预测/模态分解/卷积神经网络/BiLSTM神经网络/注意力机制

Key words

photovoltaic power prediction/modal decomposition/convolutional neural network/BiLSTM neural network/attention mechanism

分类

能源科技

引用本文复制引用

李祯,杨国华,张元曦,马鑫,杨娜,刘浩睿,马龙腾..基于模态二次分解和OOA-CNN-BiLSTM-Attention的光伏发电功率组合预测[J].综合智慧能源,2025,47(9):28-37,10.

基金项目

宁夏回族自治区自然科学基金项目(2023AAC03853) (2023AAC03853)

宁夏大学研究生创新项目(CXXM2025087)Ningxia Hui Autonomous Region Natural Science Foundation Project(2023AAC03853) (CXXM2025087)

Ningxia University Graduate Innovation Project(CXXM2025087) (CXXM2025087)

综合智慧能源

2097-0706

访问量0
|
下载量0
段落导航相关论文