| 注册
首页|期刊导航|综合智慧能源|融合CEEMDAN-CNN-LSTM的风电机组多气象场景功率回归预测

融合CEEMDAN-CNN-LSTM的风电机组多气象场景功率回归预测

皇甫陈萌 阮贺彬 徐俊俊

综合智慧能源2025,Vol.47Issue(9):38-50,13.
综合智慧能源2025,Vol.47Issue(9):38-50,13.DOI:10.3969/j.issn.2097-0706.2025.09.005

融合CEEMDAN-CNN-LSTM的风电机组多气象场景功率回归预测

Power regression prediction for wind turbines in multi-meteorological scenarios based on CEEMDAN-CNN-LSTM integration

皇甫陈萌 1阮贺彬 1徐俊俊2

作者信息

  • 1. 南京信息工程大学 自动化学院,南京 210044
  • 2. 南京邮电大学 自动化学院,南京 210023
  • 折叠

摘要

Abstract

To enhance the prediction accuracy of wind turbine output power under diverse meteorological conditions,a power regression prediction method based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),convolutional neural network(CNN),and long short-term memory(LSTM)network was proposed.The CEEMDAN algorithm was employed to decompose the original wind power data into intrinsic mode functions(IMFs)and a residual(RES).Five meteorological factors,including wind speed,were incorporated,and CNN was applied to extract features.LSTM networks were used to perform regression prediction for each subsequence.The prediction results were then superimposed and reconstructed to obtain the final predicted values.Prediction accuracy was evaluated using mean absolute error and root mean square error.Simulation results indicated that the CEEMDAN-CNN-LSTM model significantly outperformed the random forest-LSTM(RF-LSTM)and support vector machine-LSTM(SVM-LSTM)models in prediction accuracy,with notably improved performance and generalization capability under complex meteorological conditions and extreme weather events.

关键词

风电机组/功率预测/气象因素/极端天气/自适应噪声完备集合经验模态分解/卷积神经网络/长短期记忆网络/本征模态函数

Key words

wind turbine/power prediction/meteorological factors/extreme weather/complete ensemble empirical mode decomposition with adaptive noise/convolutional neural network/long short-term memory network/intrinsic mode function

分类

能源科技

引用本文复制引用

皇甫陈萌,阮贺彬,徐俊俊..融合CEEMDAN-CNN-LSTM的风电机组多气象场景功率回归预测[J].综合智慧能源,2025,47(9):38-50,13.

基金项目

国家自然科学基金项目(52107101)National Natural Science Foundation of China(52107101) (52107101)

综合智慧能源

2097-0706

访问量0
|
下载量0
段落导航相关论文