| 注册
首页|期刊导航|综合智慧能源|基于CNN-BiLSTM-RF-KDE的综合能源系统负荷预测

基于CNN-BiLSTM-RF-KDE的综合能源系统负荷预测

窦翔 李卓群 张哲 温鑫 赵勃 韩燕 仲声

综合智慧能源2025,Vol.47Issue(9):60-70,11.
综合智慧能源2025,Vol.47Issue(9):60-70,11.DOI:10.3969/j.issn.2097-0706.2025.09.007

基于CNN-BiLSTM-RF-KDE的综合能源系统负荷预测

Load forecasting for integrated energy systems based on CNN-BiLSTM-RF-KDE

窦翔 1李卓群 1张哲 1温鑫 1赵勃 1韩燕 2仲声2

作者信息

  • 1. 兰州交通大学 新能源与动力工程学院,兰州 730070
  • 2. 兰州交通大学 经济管理学院,兰州 730070
  • 折叠

摘要

Abstract

To address the challenges of insufficient multi-source heterogeneous data fusion and uncertainty quantification in load forecasting for integrated energy systems,a hybrid CNN-BiLSTM-RF-KDE model was proposed.The model utilized convolutional neural network(CNN)to extract local features of load data,bidirectional long short-term memory(BiLSTM)to capture bidirectional temporal dependencies,random forest(RF)to handle high-dimensional nonlinear relationships,and kernel density estimation(KDE)to quantify prediction uncertainty.Additionally,an electricity-heat-gas multi-energy flow coupling model was established to analyze the influence of different carbon price intervals on scheduling strategies.Case studies demonstrated that the coefficient of determination(R²)for electrical and heating load forecasting reached 0.93 and 0.96 on the training set,and 0.79 and 0.84 on the test set,respectively.The predicted power generation and heat output of each device closely aligned with the mean trend,indicating that the model provided more accurate load predictions.Based on this data,more reliable analysis and scheduling of integrated energy systems could be achieved.

关键词

综合能源系统/负荷预测/卷积神经网络/双向长短期记忆网络/核密度估计/随机森林/碳价

Key words

integrated energy system/load forecasting/convolutional neural network/bidirectional long short-term memory network/kernel density estimation/random forest/carbon price

分类

能源科技

引用本文复制引用

窦翔,李卓群,张哲,温鑫,赵勃,韩燕,仲声..基于CNN-BiLSTM-RF-KDE的综合能源系统负荷预测[J].综合智慧能源,2025,47(9):60-70,11.

基金项目

甘肃省社科规划重点委托课题(2024ZD002)Key Commissioned Project of Gansu Provincial Social Science Planning(2024ZD002) (2024ZD002)

综合智慧能源

2097-0706

访问量0
|
下载量0
段落导航相关论文