| 注册
首页|期刊导航|岩土工程学报|基于CTNOA-SBL-MIC模型的长桩桩端阻力预测分析

基于CTNOA-SBL-MIC模型的长桩桩端阻力预测分析

翁锴亮 贾敏才 苏燕

岩土工程学报2025,Vol.47Issue(10):2163-2172,10.
岩土工程学报2025,Vol.47Issue(10):2163-2172,10.DOI:10.11779/CJGE20240558

基于CTNOA-SBL-MIC模型的长桩桩端阻力预测分析

Prediction of long pile tip resistance based on CTNOA-SBL-MIC model

翁锴亮 1贾敏才 2苏燕3

作者信息

  • 1. 同济大学地下建筑与工程系,上海 200092||同济大学岩土及地下工程教育部重点试验室,上海 200092||福州大学土木工程学院,福建 福州 350108
  • 2. 同济大学地下建筑与工程系,上海 200092||同济大学岩土及地下工程教育部重点试验室,上海 200092
  • 3. 福州大学土木工程学院,福建 福州 350108
  • 折叠

摘要

Abstract

Machine learning(ML)has been widely used in pile foundation engineering modeling.However,predicting pile tip resistance of long piles remains a significant challenge,as pile tip resistance becomes substantial only when the pile is loaded and displaced to a certain extent.To address this issue and accurately predict pile tip resistance of long piles,three key factors—mechanical effects,pile properties,and soil properties—are identified.A novel hybrid modeling framework is proposed,combining multifold cross-validation,chaotic sequences,nutcracker optimization algorithm,sparse bayesian algorithm,and maximal information coefficient testing.This integrated approach not only improves prediction accuracy but also enhances model interpretability.The dataset,comprising 920 long and super-long piles,was collected in Ho Chi Minh City,Vietnam,and serves as the benchmark for this study.Model performance is evaluated using root mean square error(RMSE),mean absolute error(MAE),and correlation coefficient(R).The results demonstrate that the proposed model outperforms existing ML models in point prediction accuracy,with multiple evaluation metrics approaching optimal values.Furthermore,the paper calculates correlation strengths of various influencing factors on pile tip resistance,thereby significantly enhancing the interpretability of the model's internal calculations in combination with practical engineering insights.This study has significance for the design and research of long piles in soft ground conditions.

关键词

大型长桩/桩端阻力/机器学习/混合模型/模型可解释性

Key words

large and long piles/pile tip resistance/machine learning/hybrid model/model interpretation

分类

建筑与水利

引用本文复制引用

翁锴亮,贾敏才,苏燕..基于CTNOA-SBL-MIC模型的长桩桩端阻力预测分析[J].岩土工程学报,2025,47(10):2163-2172,10.

基金项目

国家自然科学基金项目(40972214)This work was supported by Key Program of National Natural Science Foundation of China(Grant No.40972214). (40972214)

岩土工程学报

OA北大核心

1000-4548

访问量0
|
下载量0
段落导航相关论文