| 注册
首页|期刊导航|中国机械工程|基于多维复向特征融合与CNN-GRU的转子不平衡量识别方法

基于多维复向特征融合与CNN-GRU的转子不平衡量识别方法

王坚坚 廖与禾 杨磊 薛久涛

中国机械工程2025,Vol.36Issue(9):1905-1915,11.
中国机械工程2025,Vol.36Issue(9):1905-1915,11.DOI:10.3969/j.issn.1004-132X.2025.09.001

基于多维复向特征融合与CNN-GRU的转子不平衡量识别方法

Rotor Unbalance Recognition Based on Multidimensional Complex Feature Fusion and CNN-GRU

王坚坚 1廖与禾 1杨磊 1薛久涛1

作者信息

  • 1. 西安交通大学现代设计及转子轴承系统教育部重点实验室,西安,710049||西安交通大学陕西省机械产品质量保障与诊断重点实验室,西安,710049
  • 折叠

摘要

Abstract

The existing unbalance identification algorithm without trial weight adopted an optimization algorithm framework and approximated the optimal solution through numerous iterative operations.How-ever,such strategies typically faced the limitations of slow convergence speed and the tendency to fall into local extrema.Therefore,neural networks were used to directly learn and analyze the complex mapping re-lationship between unbalance vibration response and unbalance,thus realizing high-precision unbalance identification.A sufficient unbalance vibration dataset with labels was constructed by simulating the rotor dynamics model.A feature fusion mechanism was designed to address the multi-dimensional complex-valued characteristics of unbalanced data.At the core algorithm level,a CNN-GRU hybrid model was con-structed.In this model,CNN was responsible for extracting local spatial features from vibration data,while GRU captured temporal dependencies within the vibration data.By integrating information from both spatial and temporal domains,the model's generalization ability and recognition accuracy were significantly enhanced.The unbalance recognition results of test set data and experimental bench demonstrate that this method may accurately predict the unbalance of the rotors,providing a rapid and accurate guide for dynamic balancing in the field without trial weights.

关键词

转子/无试重/不平衡量识别/卷积神经网络-门控循环单元/多维复向特征融合

Key words

rotor/without trial weight/unbalance identification/convolutional neural network-gated recurrent unit(CNN-GRU)/multidimensional complex feature fusion

分类

机械制造

引用本文复制引用

王坚坚,廖与禾,杨磊,薛久涛..基于多维复向特征融合与CNN-GRU的转子不平衡量识别方法[J].中国机械工程,2025,36(9):1905-1915,11.

基金项目

国家重点研发计划(2019YFB1311903) (2019YFB1311903)

国家自然科学基金(51575424) (51575424)

中国机械工程

OA北大核心

1004-132X

访问量0
|
下载量0
段落导航相关论文