| 注册
首页|期刊导航|中国机械工程|基于改进YOLOv5s的风电叶片表面缺陷检测方法

基于改进YOLOv5s的风电叶片表面缺陷检测方法

王俊 高贵兵

中国机械工程2025,Vol.36Issue(9):2108-2117,10.
中国机械工程2025,Vol.36Issue(9):2108-2117,10.DOI:10.3969/j.issn.1004-132X.2025.09.023

基于改进YOLOv5s的风电叶片表面缺陷检测方法

A Method for Detecting Surface Defects on Wind Turbine Blades Based on Improved YOLOv5s

王俊 1高贵兵1

作者信息

  • 1. 湖南科技大学机电工程学院,湘潭,411100
  • 折叠

摘要

Abstract

In order to improve the intelligent,efficient,and convenient development of wind turbine blade health monitoring technology,a wind turbine blade surface defect detection method was proposed based on improved YOLOv5s algorithm according to target recognition technology.Firstly,the original backbone network of YOLOv5s was replaced with an AFPN to enhance the network's learning ability.Sec-ondly,the CBAM was embedded into the backbone extraction network,which enhanced the model's abil-ity to extract surface defect features of leaves.Then,the minimum point distance intersection over union(MPDIoU)loss function was used to replace the CIoU loss function,improving the precision of bounding box localization.Finally,an improved detection method was used to detect defects in the blades of a certain wind turbine unit.The detection results show that the improved algorithm improves precision,recall and mean average precision(mAP)by 4.1%,2.9%and 4.8%,respectively,reaching as 91.9%,89.3%and 93.5%,which has significant precision advantages and better model stability.

关键词

风电叶片/缺陷检测/渐进特征金字塔网络/卷积块注意力模块

Key words

wind turbine blade/defect detection/asymptotic feature pyramid network(AFPN)/con-volutional block attention module(CBAM)

分类

信息技术与安全科学

引用本文复制引用

王俊,高贵兵..基于改进YOLOv5s的风电叶片表面缺陷检测方法[J].中国机械工程,2025,36(9):2108-2117,10.

基金项目

湖南省自然科学基金(2023JJ60145) (2023JJ60145)

湖南省杰出青年基金(2024JJ2031) (2024JJ2031)

湖南省科技创新计划(2023RC3174) (2023RC3174)

中国机械工程

OA北大核心

1004-132X

访问量0
|
下载量0
段落导航相关论文