| 注册
首页|期刊导航|灾害学|DeepSeek应用于自然灾害风险机器学习预测研究的探索

DeepSeek应用于自然灾害风险机器学习预测研究的探索

杨月巧 宁占金 李明媛 袁志祥 宋泽文

灾害学2025,Vol.40Issue(4):114-119,179,7.
灾害学2025,Vol.40Issue(4):114-119,179,7.DOI:10.3969/j.issn.1000-811X.2025.04.017

DeepSeek应用于自然灾害风险机器学习预测研究的探索

Exploration of DeepSeek's Application in Machine Learning-Based Prediction Research for Natural Disaster Risks

杨月巧 1宁占金 2李明媛 1袁志祥 3宋泽文1

作者信息

  • 1. 防灾科技学院 应急管理学院,河北 三河 065201
  • 2. 中国消防救援学院 应急救援系,北京 102202
  • 3. 陕西省地震局,陕西 西安 710068
  • 折叠

摘要

Abstract

Against the backdrop of global climate warming,natural disasters are exhibiting new patterns of high frequency,sudden onset,and concurrent occurrence,making traditional prediction paradigms increasingly inadequate for urgent risk governance needs.Based on DeepSeek's intelligent interactive research design,se-mantic analysis with feature extraction,and AI-driven data governance coupled with knowledge discovery tech-nologies,a multidimensional analysis is conducted on 1,565 machine learning-based natural disaster risk predic-tion papers.The findings are as follows:①Technological dimension:China has maintained an absolute global lead over the past five years,with 2024 witnessing the fastest growth in machine learning applications;②Sce-nario dimension:urban disasters remain the core research focus,while emerging risks such as compound ex-treme events and cascading disasters are gaining prominence.Among leading journals,the International Journal of Disaster Risk Reduction dominates English publications,while Journal of Catastrophology leads Chinese pub-lications;③Methodological dimension:classification and regression models prevail,ensemble learning remains the dominant algorithm choice,deep learning demonstrates outstanding performance in spatiotemporal prediction and image processing,and multi-algorithm fusion has emerged as a cutting-edge trend.

关键词

DeepSeek/人工智能/自然灾害风险预测/机器学习

Key words

DeepSeek/artificial intelligence/natural disaster risk prediction/machine learning

分类

资源环境

引用本文复制引用

杨月巧,宁占金,李明媛,袁志祥,宋泽文..DeepSeek应用于自然灾害风险机器学习预测研究的探索[J].灾害学,2025,40(4):114-119,179,7.

基金项目

大学生创新创业训练计划"人员密集场所的拥挤态势感知与辅助路径决策技术"(S202411775125) (S202411775125)

灾害学

OA北大核心

1000-811X

访问量0
|
下载量0
段落导航相关论文