| 注册
首页|期刊导航|郑州大学学报(工学版)|基于CSI主成分分割的人体动作识别方法

基于CSI主成分分割的人体动作识别方法

饶壮 丁大钊 王依菁

郑州大学学报(工学版)2025,Vol.46Issue(6):49-57,9.
郑州大学学报(工学版)2025,Vol.46Issue(6):49-57,9.DOI:10.13705/j.issn.1671-6833.2025.03.021

基于CSI主成分分割的人体动作识别方法

Human Activity Recognition Method Based on CSI Principal Component Segmentation

饶壮 1丁大钊 2王依菁2

作者信息

  • 1. 郑州大学 网络空间安全学院,河南 郑州 450002
  • 2. 嵩山实验室,河南 郑州 450000
  • 折叠

摘要

Abstract

The traditional method of human activity recognition based on channel state information(CSI)suffers from issues such as input data redundancy and limited feature extraction.To address this,a human activity recogni-tion approach based on CSI principal components and a dual-layer sliding window mechanism was proposed.First-ly,autlier removal and noise reduction were performed on the amplitude the use of a dual-layer sliding window mechanism based on principal component analysis enabled activity segmentation of preprocessed CSI data to elimi-nate irrelevant information and enhance model training efficiency.Subsequently,spatial and temporal analysis of the CSI data was conducted using convolutional neural network and bidirectional gated recurrent unit,with the inte-gration of a multi-head attention mechanism to focus on key information for achieving high-precision recognition of human activities.Experimental validation was performed using the WiAR and BAHAR public datasets,demonstra-ting that the proposed method could effectively recognize various human activities in diverse environments,while re-ducing the data volume by 5%.The accuracy achieved on the WiAR dataset was 96.53%,indicating superior per-formance compared to existing methods.

关键词

信道状态信息/活动分割/卷积神经网络/双向门控循环单元/多头注意力机制

Key words

channel state information/activity segmentation/convolutional neural network/bidirectional gated re-current unit/multi-head attention mechanism

分类

信息技术与安全科学

引用本文复制引用

饶壮,丁大钊,王依菁..基于CSI主成分分割的人体动作识别方法[J].郑州大学学报(工学版),2025,46(6):49-57,9.

基金项目

河南省科技攻关计划项目(232102210045) (232102210045)

嵩山实验室重大科研项目(ZZK202403002) (ZZK202403002)

郑州大学学报(工学版)

OA北大核心

1671-6833

访问量0
|
下载量0
段落导航相关论文