| 注册
首页|期刊导航|Journal of Electronic Science and Technology|Automated ECG arrhythmia classification using hybrid CNN-SVM architectures

Automated ECG arrhythmia classification using hybrid CNN-SVM architectures

Amine Ben Slama Yessine Amri Ahmed Fnaiech Hanene Sahli

Journal of Electronic Science and Technology2025,Vol.23Issue(3):P.43-55,13.
Journal of Electronic Science and Technology2025,Vol.23Issue(3):P.43-55,13.DOI:10.1016/j.jnlest.2025.100316

Automated ECG arrhythmia classification using hybrid CNN-SVM architectures

Amine Ben Slama 1Yessine Amri 2Ahmed Fnaiech 3Hanene Sahli3

作者信息

  • 1. Higher Institute of Medical Technologies of Tunis,University of Tunis El Manar,Tunis,1006,Tunisia
  • 2. Biochemistry Laboratory,Bechir Hamza Children’s Hospital,Tunis,1007,Tunisia Higher Institute of Applied Studies in Humanity Le Kef,University of Jendouba,Le Kef,7001,Tunisia
  • 3. National Higher School of Engineers of Tunis,University of Tunis,Tunis,1008,Tunisia
  • 折叠

摘要

关键词

Arrhythmia/Classification/Convolutional neural networks/ECG signals/Support vector machine

分类

医药卫生

引用本文复制引用

Amine Ben Slama,Yessine Amri,Ahmed Fnaiech,Hanene Sahli..Automated ECG arrhythmia classification using hybrid CNN-SVM architectures[J].Journal of Electronic Science and Technology,2025,23(3):P.43-55,13.

Journal of Electronic Science and Technology

1674-862X

访问量0
|
下载量0
段落导航相关论文