| 注册
首页|期刊导航|分子影像学杂志|CT深度学习图像重建可降低辐射剂量和提高图像质量:基于体模研究

CT深度学习图像重建可降低辐射剂量和提高图像质量:基于体模研究

樊丽华 李明 贾永军 韩冬 于勇 郑运松 魏伟

分子影像学杂志2025,Vol.48Issue(9):1064-1070,7.
分子影像学杂志2025,Vol.48Issue(9):1064-1070,7.DOI:10.12122/j.issn.1674-4500.2025.09.02

CT深度学习图像重建可降低辐射剂量和提高图像质量:基于体模研究

Impact of CT deep learning image reconstruction can reduce radiation dose and improve image quality:based on phantom study

樊丽华 1李明 1贾永军 1韩冬 1于勇 2郑运松 2魏伟1

作者信息

  • 1. 陕西中医药大学附属医院医学影像科,陕西 咸阳 712000
  • 2. 陕西中医药大学附属医院医学影像科,陕西 咸阳 712000||陕西中医药大学医学技术学院,陕西 咸阳 712046
  • 折叠

摘要

Abstract

Objective To evaluate the potential of deep learning image reconstruction(DLIR)in improving image quality and reducing radiation dose by comparing the noise power spectrum,task-based transfer function and lesion detection capability.Methods The ACR464 phantom was scanned using GE Revolution APEX CT and eight different noise indices(NI=10,14,16,18,20,22,24,28)were set.The original data were subjected to image reconstruction using filtered back-projection(FBP),multi-model iterative reconstruction algorithms(ASiR-V)at 40%,ASiR-V at 60%,ASiR-V at 80%,and different levels of deep learning image reconstruction(DLIR-L,DLIR-M,DLIR-H)algorithms.The image quality was evaluated by using imQuest software to calculate the noise power spectrum(NPS),task-based transfer function(TTF),and detection capability index(d')of different reconstruction algorithms.Results Among all the reconstruction algorithms,the NPS peak of DLIR-H was the lowest.With the increase of noise index,both NPS and fav move towards low frequencies.The fav of DLIR-H(0.24-0.27 mm-1)was only 40%lower than that of ASiR-V(0.26-0.28 mm-1).The TTF50%value was not affected by the DLIR level.The TTF50%value was(37.44±10.85)%and(46.24±15.28)%higher than that of ASiR-V60%and 80%,respectively.The detection ability of both large and small features in deep learning image reconstruction was 40%higher than that of ASiR-V.When comparing the radiation doses with comparable lesions detection capabilities of 40%ASiR-V at NI=10 and DLIR-H,the radiation dose for small features decreased by approximately 76.48%,and that for large features decreased by approximately 72.59%.Conclusion Deep learning image reconstruction can not only reduce noise,improve spatial resolution and lesion detectibility without changing noise texture,but also has more powerful ability to reduce radiation dose than ASiR-V.

关键词

深度学习图像重建/辐射剂量/图像质量/体模

Key words

deep learning image reconstruction/radiation dose/image quality/phantom

引用本文复制引用

樊丽华,李明,贾永军,韩冬,于勇,郑运松,魏伟..CT深度学习图像重建可降低辐射剂量和提高图像质量:基于体模研究[J].分子影像学杂志,2025,48(9):1064-1070,7.

基金项目

陕西省重点研发计划项目(2024SF-YBXM-524) (2024SF-YBXM-524)

分子影像学杂志

1674-4500

访问量0
|
下载量0
段落导航相关论文