首页|期刊导航|高师理科学刊|与积分平均值有关的误差估计

与积分平均值有关的误差估计OA

Error estimates related to integral averages

中文摘要英文摘要

在偏微分方程数值求解过程中,经常使用积分算子对连续问题进行离散化处理,导致面临与积分有关的数值解的误差估计问题.通过两个基本不等式和四个经典的范数,结合分部积分法,给出函数与其积分平均值之间的误差估计,并刻画两个函数乘积的积分平均值与二者积分平均值乘积之间的关系及误差界.

In the numerical solution process of partial differential equations,integral operators are often used to discretize continuous problems,subsequently encountering error estimation issues related to integrals in numerical solutions.Using two fundamental inequalities and four classical norms,combined with integration by parts,this paper establishes error estimates between a function and its integral average.Furthermore,it characterizes the relationship and error bounds between the integral average of the product of two functions and the product of their respective integral averages.

马鹏;杨峥;杨立敏

中国石油大学(北京)克拉玛依校区 数学系,新疆 克拉玛依 834000中国石油大学(北京)克拉玛依校区 数学系,新疆 克拉玛依 834000中国石油大学(北京)克拉玛依校区 数学系,新疆 克拉玛依 834000

数理科学

积分平均值误差估计分部积分法误差界

integral averageerror estimateintegration by partserror bound

《高师理科学刊》 2025 (9)

1-4,4

中国石油大学(北京)克拉玛依校区本科教育教学研究和改革项目(JG2022038)中国石油大学(北京)克拉玛依校区本科教育教学研究和改革专题项目(JG2024023)中国石油大学(北京)克拉玛依校区大学生思想政治教育主题实践与工作项目——校区大学生数学竞赛组织管理模式研究新疆维吾尔自治区高校教改项目(XJGXPTJG-202298)

10.3969/j.issn.1007-9831.2025.09.001

评论