| 注册
首页|期刊导航|计算机应用与软件|基于双通道深度强化学习的数据库索引推荐技术

基于双通道深度强化学习的数据库索引推荐技术

蒋忠强 时家幸 王宝晗 蔡敦波

计算机应用与软件2025,Vol.42Issue(9):38-43,6.
计算机应用与软件2025,Vol.42Issue(9):38-43,6.DOI:10.3969/j.issn.1000-386x.2025.09.006

基于双通道深度强化学习的数据库索引推荐技术

INDEX RECOMMENDATION BASED ON DUAL CHANNEL DQN

蒋忠强 1时家幸 1王宝晗 1蔡敦波1

作者信息

  • 1. 中移(苏州)软件技术有限公司 江苏苏州 215000
  • 折叠

摘要

Abstract

Aiming at the problems such as unused the characteristics of SQL workload and the mechanical rule method during index recommendation,we propose a DQN-based dual channel index recommendation model(Dual Channel Deep Q-Network,DC-DQN).The index selectivity and SQL query type features wre trained independently through two separate channels and the information fusion was carried out through the full connection layer,so as to select the candidate index that better matches three-star index.The experimental results on TPC-H dataset show that DC-DQN performs as good as having all indexes and under the construction of specific query workload,DC-DQN performs better than the previous method.

关键词

索引推荐/深度强化学习/三星索引/索引选择问题

Key words

Index recommendation/Deep reinforcement learning/Three-star index/Index select problem

分类

信息技术与安全科学

引用本文复制引用

蒋忠强,时家幸,王宝晗,蔡敦波..基于双通道深度强化学习的数据库索引推荐技术[J].计算机应用与软件,2025,42(9):38-43,6.

基金项目

中国移动通信集团有限公司应用基础研究项目"云计算前沿技术研究"(R22100TE). (R22100TE)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文