| 注册
首页|期刊导航|华北水利水电大学学报(自然科学版)|基于大语言模型的抽水蓄能电站智能运维辅助系统构建研究

基于大语言模型的抽水蓄能电站智能运维辅助系统构建研究

胡昊 许昭一 崔争艳 张兴奎 张浩宇

华北水利水电大学学报(自然科学版)2025,Vol.46Issue(5):34-42,9.
华北水利水电大学学报(自然科学版)2025,Vol.46Issue(5):34-42,9.DOI:10.19760/j.ncwu.zk.2025071

基于大语言模型的抽水蓄能电站智能运维辅助系统构建研究

Intelligent Operation and Maintenance for Pumped Storage Power Stations Based on Large Language Model

胡昊 1许昭一 2崔争艳 3张兴奎 2张浩宇2

作者信息

  • 1. 黄河水利职业技术大学,河南 开封 475004||华北水利水电大学,河南 郑州 450046||河南省跨流域区域引调水运行与生态安全工程研究中心,河南 开封 475004
  • 2. 华北水利水电大学,河南 郑州 450046
  • 3. 黄河水利职业技术大学,河南 开封 475004||河南省跨流域区域引调水运行与生态安全工程研究中心,河南 开封 475004
  • 折叠

摘要

Abstract

[Objective]To address the complexities of operation and maintenance(O&M)work at pumped storage power sta-tions,the high demand for specialized knowledge,the inefficiency of traditional knowledge retrieval,and the difficulty of gen-eral large language models(LLMs)in accurately understanding the unique terminology and complex operating conditions spe-cific to pumped storage O&M,this study aims to enhance the professional competence and O&M efficiency of personnel,im-prove knowledge reuse efficiency,and meet the national strategic requirements for developing new quality productivity in water conservancy and electric power systems by constructing an intelligent O&M assistance system tailored for pumped storage power stations.[Methods]The Pumped Storage-Artificial Intelligence Operation and Maintenance(PS-AIOM)system was con-structed based on large language models.Utilizing a locally deployed LLM as the foundation,the system integrated retrieval-augmented generation(RAG)and prompt engineering techniques.Through external knowledge base retrieval,it enhanced the accuracy of LLM applications in pumped storage O&M.To ensure response accuracy for O&M tasks,a dedicated O&M knowl-edge base was constructed.To validate system effectiveness,a test dataset was created.[Results](1)An evaluation method combining keyword matching and semantic similarity was adopted to score PS-AIOM's responses,considering both the specific matching of content and overall textual similarity for a comprehensive assessment.(2)PS-AIOM achieved a satisfaction rate of 83%for O&M queries,with a comprehensive average score of 0.8138,demonstrating its effectiveness in assisting O&M personnel.(3)PS-AIOM significantly outperformed advanced general LLMs(Model Z:4%satisfaction rate,0.3982 average score;Model T:17%satisfaction rate,0.4775 average score).[Conclusion]By integrating a locally deployed LLM base,RAG technology,and a domain-specific knowledge base,the PS-AIOM system effectively overcomes the limitations of general LLMs regarding professional domain knowledge scarcity.It achieves relatively accurate knowledge application within the O&M domain of pumped storage power stations.

关键词

抽水蓄能电站/智能运维/大语言模型/检索增强生成

Key words

pumped storage power station/intelligent operation and maintenance/large language model/retrieval-augmented generation

分类

建筑与水利

引用本文复制引用

胡昊,许昭一,崔争艳,张兴奎,张浩宇..基于大语言模型的抽水蓄能电站智能运维辅助系统构建研究[J].华北水利水电大学学报(自然科学版),2025,46(5):34-42,9.

基金项目

国家自然科学基金项目(52079053) (52079053)

河南省中央引导地方科技发展资金项目(Z20241471035) (Z20241471035)

河南省重点研发专项(241111210300) (241111210300)

河南省自然科学基金项目(252300420056) (252300420056)

河南省高等学校重点科研项目(25B520056). (25B520056)

华北水利水电大学学报(自然科学版)

OA北大核心

1002-5634

访问量0
|
下载量0
段落导航相关论文