| 注册
首页|期刊导航|南京大学学报(自然科学版)|一种基于改进经验模态分解与A-LSTM混合神经网络的股价预测方法

一种基于改进经验模态分解与A-LSTM混合神经网络的股价预测方法

苏兆辉 尚领 刘志中 皇浩

南京大学学报(自然科学版)2025,Vol.61Issue(4):613-623,11.
南京大学学报(自然科学版)2025,Vol.61Issue(4):613-623,11.DOI:10.13232/j.cnki.jnju.2025.04.007

一种基于改进经验模态分解与A-LSTM混合神经网络的股价预测方法

A stock price prediction method based on improved empirical mode decomposition and A-LSTM hybrid neural network

苏兆辉 1尚领 2刘志中 1皇浩1

作者信息

  • 1. 烟台大学计算机与控制工程学院,烟台,264005
  • 2. 河南省文化旅游投资集团有限公司,洛阳,471599
  • 折叠

摘要

Abstract

Due to the non-linear and noisy nature of stock price sequences,stock price prediction has always been a challenging task.Many studies use decomposition algorithms to improve prediction accuracy,but these studies only focus on overcoming stock price nonlinearity and do not consider other price factors.To address the above issues,this paper proposes a stock price prediction method based on an improved empirical mode decomposition and A-LSTM hybrid neural network.This method introduces multiple data indicators and combines complementary set empirical mode decomposition algorithm with attention enhanced Long Short-Term Memory(LSTM).Firstly,this method utilizes the complementary set empirical mode decomposition method to decompose the original closing price of the stock,obtaining multiple Intrinsic Mode Functions(IMFs)and a trend term to reduce the nonlinearity of the stock price,while extracting multi-scale features of the IMF;secondly,the obtained IMF,trend term,as well as the highest,lowest,and closing prices are input into an attention enhanced LSTM to learn multiple stock influencing factors and mine their feature information;finally,the attention enhanced LSTM is utilized to learn long-term dependencies in features and dynamically adjust the weights of input features,highlighting key information,and outputting prediction results.The experimental results on two stock markets and four stock datasets show that the predictive performance of our research method is higher than that of the benchmark model,with good accuracy and stability,which can provide support for financial market analysis and investment decision-making.

关键词

互补集合经验模态分解/多特征提取/LSTM/注意力机制/股价预测

Key words

complementary ensemble empirical mode decomposition/multi-feature extraction/LSTM/attention mechanism/stock price prediction

分类

信息技术与安全科学

引用本文复制引用

苏兆辉,尚领,刘志中,皇浩..一种基于改进经验模态分解与A-LSTM混合神经网络的股价预测方法[J].南京大学学报(自然科学版),2025,61(4):613-623,11.

基金项目

国家自然科学基金(62273290,61872126),山东省自然科学基金(ZR2020KF019) (62273290,61872126)

南京大学学报(自然科学版)

OA北大核心

0469-5097

访问量0
|
下载量0
段落导航相关论文