| 注册
首页|期刊导航|南京大学学报(自然科学版)|基于显著性加权的分治因果发现方法

基于显著性加权的分治因果发现方法

白天旭 翟岩慧 李德玉

南京大学学报(自然科学版)2025,Vol.61Issue(4):624-634,11.
南京大学学报(自然科学版)2025,Vol.61Issue(4):624-634,11.DOI:10.13232/j.cnki.jnju.2025.04.008

基于显著性加权的分治因果发现方法

A significance-weighted divide-and-conquer approach for causal discovery

白天旭 1翟岩慧 2李德玉2

作者信息

  • 1. 山西大学计算机与信息技术学院,太原,030006
  • 2. 山西大学计算机与信息技术学院,太原,030006||计算智能与中文信息处理教育部重点实验室,山西大学计算机与信息技术学院,太原,030006
  • 折叠

摘要

Abstract

To address the challenges of causal discovery in high-dimensional data,this paper proposes a significance-weighted divide-and-conquer causal discovery approach(SWCD).Traditional causal discovery methods suffer from high computational complexity,ambiguous differentiation of Markov equivalence classes,and crude conflict resolution mechanisms in high-dimensional scenarios.To overcome these limitations,this work integrates divide-and-conquer strategies with significance weighting to refine the causal discovery process.Specifically,the method achieves a synergistic optimization of efficiency and accuracy through a three-tiered design.In the partitioning phase,path significance values(PSV)and path importance scores(PIS)are defined to dynamically quantify the statistical reliability of causal paths.By combining topological features and adaptive partitioning strategies,the framework prioritizes retaining high-confidence causal chains to protect critical structures while dynamically optimizing decomposition paths.In the solving phase,the PC algorithm is enhanced using residual-based conditional independence testing(ReCIT),which distinguishes Markov equivalence classes by analyzing the independence of regression residuals.In the merging phase,a confidence score-driven conflict resolution mechanism is designed to resolve edge conflicts during subgraph merging,where edge reliability is quantified through confidence scores.Experimental results demonstrate that the proposed method significantly outperforms existing baseline approaches such as CPBG on high-dimensional datasets,achieving superior performance in efficiency,robustness,and interpretability.Future research can focus on optimizing significance quantification metrics,refining dynamic partitioning strategies,and exploring adaptability to nonlinear causal relationships.

关键词

高维因果发现/分治策略/显著性加权/残差独立性/冲突消解

Key words

high-dimensional causal discovery/divide-and-conquer strategy/significance weighting/residual independence/conflict resolution

分类

信息技术与安全科学

引用本文复制引用

白天旭,翟岩慧,李德玉..基于显著性加权的分治因果发现方法[J].南京大学学报(自然科学版),2025,61(4):624-634,11.

基金项目

国家自然科学基金(62072294) (62072294)

南京大学学报(自然科学版)

OA北大核心

0469-5097

访问量0
|
下载量0
段落导航相关论文