| 注册
首页|期刊导航|南京大学学报(自然科学版)|面向缺失标签的基于数据依赖标签相关性多标签学习

面向缺失标签的基于数据依赖标签相关性多标签学习

蔡林晟 何卓新 毛煜 林耀进

南京大学学报(自然科学版)2025,Vol.61Issue(4):645-659,15.
南京大学学报(自然科学版)2025,Vol.61Issue(4):645-659,15.DOI:10.13232/j.cnki.jnju.2025.04.010

面向缺失标签的基于数据依赖标签相关性多标签学习

Data-dependent dynamic label correlation learning for multi-label learning with missing label

蔡林晟 1何卓新 2毛煜 1林耀进1

作者信息

  • 1. 闽南师范大学计算机学院,漳州,363000||数据科学与智能应用重点实验室,闽南师范大学,漳州,363000
  • 2. 华南师范大学计算机学院,广州,510000
  • 折叠

摘要

Abstract

Multi-label learning assigns multiple labels to data instances,but real-world data often suffers from missing labels,increasing model complexity and prediction bias.Existing methods recover missing labels using predefined label correlations,yet neglect the compatibility between original label spaces and correlation matrices,introducing noise and spurious dependencies.To address this,we propose DDLC(Data-Dependent Dynamic Label Correlation Learning)method.By preserving label correlations through manifold regularization,DDLC employs a dynamic mapping function to recover the missing labels while suppressing the noise interference in the output space,adaptively adjusting the label associations across scenarios.Experiments on benchmark datasets demonstrate DDLC's superior performance and generalization capability.

关键词

多标签学习/标签缺失/标签相关性/标签特定特征/近端梯度下降

Key words

multi-label learning/missing label/label correlation/label-specific features/proximal gradient descent

分类

信息技术与安全科学

引用本文复制引用

蔡林晟,何卓新,毛煜,林耀进..面向缺失标签的基于数据依赖标签相关性多标签学习[J].南京大学学报(自然科学版),2025,61(4):645-659,15.

基金项目

国家自然科学基金(62076116) (62076116)

南京大学学报(自然科学版)

OA北大核心

0469-5097

访问量0
|
下载量0
段落导航相关论文