| 注册
首页|期刊导航|科技情报研究|基于知识图谱的在线健康社区医疗专家专长领域识别及评价方法研究

基于知识图谱的在线健康社区医疗专家专长领域识别及评价方法研究

席运江 张倩 李曼 于娟

科技情报研究2025,Vol.7Issue(4):24-34,11.
科技情报研究2025,Vol.7Issue(4):24-34,11.DOI:10.19809/j.cnki.kjqbyj.2025.04.003

基于知识图谱的在线健康社区医疗专家专长领域识别及评价方法研究

Research on Identification and Evaluation Method of Medical Experts'Expertise Domains in Online Health Community Based on Knowledge Graph

席运江 1张倩 1李曼 1于娟2

作者信息

  • 1. 华南理工大学工商管理学院,广州 510641
  • 2. 福州大学经济与管理学院,福州 350108
  • 折叠

摘要

Abstract

[Purpose/significance]This study aims to identify the expertise domains of medical experts,and evaluates their domain levels to provide a basis for community expert recommendation.[Method/process]This study utilized the improved OneRel model to structure community historical Q&A into entity relation triples.Then used the knowledge graph triples to test the consistency between the medical knowledge in the community Q&A and the domain knowl-edge,and finally obtained the doctor's domain levels by aggregating in each expertise domain.[Result/conclusion]Using the data example from xywy.com website,214 doctors in the community were ranked in terms of their average level of expertise domains and their respective reliable domains levels were identified.The study verified that the ba-sic information self-reported by doctors in online health communities,such as their expertise and personal profiles,did not fully correspond to their real competence characteristics.Compared with other medical expert discovery meth-ods,this method can intelligently identify and evaluate doctors'expertise domains,demonstrating objectivity,accuracy,and strong interpretability.

关键词

在线健康社区/专家发现/知识图谱/实体关系联合抽取/可信性

Key words

online health community/expert finding/knowledge graph/entity relation joint extraction/reliability

分类

社会科学

引用本文复制引用

席运江,张倩,李曼,于娟..基于知识图谱的在线健康社区医疗专家专长领域识别及评价方法研究[J].科技情报研究,2025,7(4):24-34,11.

基金项目

国家自然科学基金项目"虚拟健康社区信息可信度评价模型及智能推荐研究"(编号:72171090) (编号:72171090)

科技情报研究

2096-7144

访问量0
|
下载量0
段落导航相关论文