| 注册
首页|期刊导航|南京大学学报(自然科学版)|基于机器学习的宽带异常折射声学超表面

基于机器学习的宽带异常折射声学超表面

余玉萍 陈安 杨京 梁彬 程建春

南京大学学报(自然科学版)2025,Vol.61Issue(5):805-815,11.
南京大学学报(自然科学版)2025,Vol.61Issue(5):805-815,11.DOI:10.13232/j.cnki.jnju.2025.05.009

基于机器学习的宽带异常折射声学超表面

Machine learning-assisted broadband anomaly refractive acoustic metasurface

余玉萍 1陈安 1杨京 1梁彬 1程建春1

作者信息

  • 1. 近代声学教育部重点实验室,南京大学声学研究所,南京,210093||人工微结构科学与技术协同创新中心,南京大学,南京,210093
  • 折叠

摘要

Abstract

Anomalous refraction,key to wave acoustics,can break through the limitations of the conventioned laws of refraction and enables unconventional control of sound wave propagation.Recently,acoustic metasurfaces have shown significant progress in precise sound manipulation,but traditional designs face limitations like narrow bandwidth and strong dispersion,restricting applications in acoustic cloaking and noise reduction.This paper presents a machine learning-assisted broadband anomaly refractive acoustic metasurface comprising 16 subwavelength units with hybrid multiple resonances.Each unit achieves broadband high transmission(>98%)and strong linear phase fitting(>97%),enabling constant refraction angles(Δθ<2.6°)across 1000~4000 Hz.The design employs Gaussian Bayesian optimization with adaptive entropy search portfolio to efficiently explore the high-dimensional(16×6)parameter space,determining optimal parameter configurations within 60 iterations.Numerical simulations validate this approach,offering new possibilities for broadband acoustic manipulation,directional transmission,and cloaking technology.

关键词

高斯贝叶斯优化/宽带操控/异常声折射/声学超表面/熵搜索策略

Key words

Gaussian Bayesian optimization/broadband control/acoustic anomaly refractive/acoustic metasurface/entropy search portfolio

分类

数理科学

引用本文复制引用

余玉萍,陈安,杨京,梁彬,程建春..基于机器学习的宽带异常折射声学超表面[J].南京大学学报(自然科学版),2025,61(5):805-815,11.

基金项目

国家自然科学基金(12174190) (12174190)

南京大学学报(自然科学版)

OA北大核心

0469-5097

访问量0
|
下载量0
段落导航相关论文