| 注册
首页|期刊导航|南京邮电大学学报(自然科学版)|基于多尺度特征融合和对比学习的小样本图像分割方法

基于多尺度特征融合和对比学习的小样本图像分割方法

胡晓飞 吴佳芸 邹贵春 武灵芝

南京邮电大学学报(自然科学版)2025,Vol.45Issue(5):66-73,8.
南京邮电大学学报(自然科学版)2025,Vol.45Issue(5):66-73,8.DOI:10.14132/j.cnki.1673-5439.2025.05.008

基于多尺度特征融合和对比学习的小样本图像分割方法

Few-shot image segmentation based on multi-scale feature fusion and contrastive learning

胡晓飞 1吴佳芸 2邹贵春 2武灵芝3

作者信息

  • 1. 南京邮电大学通信与信息工程学院,江苏 南京 210003
  • 2. 南京邮电大学化学与生命科学学院,江苏 南京 210023
  • 3. 南京邮电大学理学院,江苏 南京 210023
  • 折叠

摘要

Abstract

In response to the scarcity of annotated medical image data and the imitations of existing mod-els in segmenting multi-scale target images,this paper proposes a few-shot medical image segmentation method based on multi-scale feature fusion and contrastive learning.First,a sequential concatenation-based multi-scale skip connection method is introduced to replace traditional skip connections,enabling effective fusion of multi-scale feature maps from the encoder and their transmission to the corresponding decoder.Second,considering the dual-branch structure of the model,a contrastive learning module based on multi-scale features is proposed,and a loss function is designed to enhance the model's dis-criminative ability at the pixel level.Experiments show that our method achieves cross-domain data seg-mentation for medical images,mitigates performance degradation due to dataset scarcity,and improves the segmentation accuracy and generalization for different-scale targets,outperforming current main-stream few-shot medical image segmentation methods.

关键词

深度学习/医学图像分割/多尺度特征融合/对比学习/小样本学习

Key words

deep learning/medical image segmentation/multi-scale feature fusion/contrastive learn-ing/few-shot learning

分类

信息技术与安全科学

引用本文复制引用

胡晓飞,吴佳芸,邹贵春,武灵芝..基于多尺度特征融合和对比学习的小样本图像分割方法[J].南京邮电大学学报(自然科学版),2025,45(5):66-73,8.

基金项目

国家自然科学基金(61771251)和江苏省高校实验室研究课题(GS2022YB36)资助项目 (61771251)

南京邮电大学学报(自然科学版)

OA北大核心

1673-5439

访问量0
|
下载量0
段落导航相关论文