| 注册
首页|期刊导航|内蒙古民族大学学报(自然科学版)|基于迁移学习的钻井溢流预测方法

基于迁移学习的钻井溢流预测方法

赵孟雪 时小虎 边婧 付加胜 韩霄松

内蒙古民族大学学报(自然科学版)2025,Vol.40Issue(5):42-50,9.
内蒙古民族大学学报(自然科学版)2025,Vol.40Issue(5):42-50,9.DOI:10.14045/j.cnki.15-1220.2025.05.007

基于迁移学习的钻井溢流预测方法

Drilling Overflow Prediction Algorithm Based on Transfer Learning

赵孟雪 1时小虎 2边婧 2付加胜 3韩霄松2

作者信息

  • 1. 长春财经学院 人工智能学院,吉林 长春 130122
  • 2. 吉林大学 软件学院,吉林 长春 130012
  • 3. 中国石油集团工程技术研究院有限公司,北京 102206
  • 折叠

摘要

Abstract

Overflow are common and complex conditions in oil drilling that can lead to well control risks.To address the challenge of rapidly and efficiently identifying overflow,a domain adaptation method based on transfer learning is proposed,which can detect blowouts 10 minutes in advance with a small sample size.Features of oil drilling data are processed using variance selection and mutual information methods,and sample labels are con-structed using a sliding time window.A CNN-LSTM basic model is established.Additionally,multi-kernel MMD in the DAN method is applied to adjust the last three fully connected layers of the CNN-LSTM model,adapting the data of source and target domain.To prevent overfitting,Gaussian white noise is added for data augmentation.The experimental results show that the model achieves a blowout prediction accuracy in target domain data reached 78.98%,achieving effective early prediction.

关键词

石油钻井/溢流预测/时间序列预测/迁移学习

Key words

oil drilling/overflow prediction/time series prediction/transfer learning

分类

信息技术与安全科学

引用本文复制引用

赵孟雪,时小虎,边婧,付加胜,韩霄松..基于迁移学习的钻井溢流预测方法[J].内蒙古民族大学学报(自然科学版),2025,40(5):42-50,9.

基金项目

吉林省科技发展计划项目(20220201145GX) (20220201145GX)

内蒙古民族大学学报(自然科学版)

1671-0185

访问量0
|
下载量0
段落导航相关论文