| 注册
首页|期刊导航|湿法冶金|基于集成学习算法的金浸出率智能预测模型设计研究

基于集成学习算法的金浸出率智能预测模型设计研究

周一帆

湿法冶金2025,Vol.44Issue(5):698-705,8.
湿法冶金2025,Vol.44Issue(5):698-705,8.DOI:10.13355/j.cnki.sfyj.2025.05.016

基于集成学习算法的金浸出率智能预测模型设计研究

Design of Intelligent Prediction Model for Gold Leaching Rate Based on Ensemble Learning Algorithms

周一帆1

作者信息

  • 1. 驻马店职业技术学院信息工程学院,河南驻马店 463000||鸿蒙生态开发重点实验室,河南 驻马店 463000
  • 折叠

摘要

Abstract

To address the problem of low prediction accuracy and large noise data in gold leaching rate prediction,a high-efficiency intelligent prediction method was proposed.Combining the improved XGBoost and LightGBM models,a dynamic learning rate,regularization optimization,and Bayesian optimization algorithm were used to design an ensemble learning model for gold leaching rate prediction.The results show that the ensemble learning model has a significantly improved prediction accuracy compared to traditional single models,and its MSE is about 28.8% and 22.9% lower than XGBoost and LightGBM,respectively.The model has high stability in real production environments.The ensemble learning model can effectively improve the prediction accuracy of gold leaching rate and has strong practical application value.

关键词

金浸出率/预测/集成学习/XGBoost模型/LightGBM模型/数值仿真

Key words

gold leaching rate/prediction/ensemble learning/XGBoost model/LightGBM model/numerical simulation

分类

通用工业技术

引用本文复制引用

周一帆..基于集成学习算法的金浸出率智能预测模型设计研究[J].湿法冶金,2025,44(5):698-705,8.

湿法冶金

OA北大核心

1009-2617

访问量0
|
下载量0
段落导航相关论文