| 注册
首页|期刊导航|陕西水利|基于GA-CNN-LSTM的库岸滑坡位移预测

基于GA-CNN-LSTM的库岸滑坡位移预测

汪豪捷

陕西水利Issue(10):18-21,4.
陕西水利Issue(10):18-21,4.

基于GA-CNN-LSTM的库岸滑坡位移预测

Displacement Prediction of Reservoir Bank Landslides Based on GA-CNN-LSTM Model

汪豪捷1

作者信息

  • 1. 婺源县水利水电建筑工程有限公司,江西婺源 333200
  • 折叠

摘要

Abstract

To address the limitations of displacement prediction accuracy for reservoir bank landslides,a hybrid GA-CNN-LSTM model is proposed.The model utilizes CNN to extract spatial features from multi-source data,LSTM to capture temporal dynamics,and genetic algorithms(GA)to optimize LSTM hyperparameters(including neuron count,learning rate,and dropout rate).Validation using landslide monitoring data from the Three Gorges Reservoir area indicates that the proposed model outperforms both CNN-LSTM and plain LSTM models,reducing RMSE by 21.7%and 63.7%,respectively,and achieving an R2 of 0.9874.The results demonstrate that GA effectively mitigates overfitting and significantly enhances prediction performance,providing a reliable tool for early warning of landslides along reservoir banks.

关键词

库岸滑坡/位移预测/CNN-LSTM/遗传算法

Key words

Reservoir bank landslides/displacement prediction/CNN-LSTM/genetic algorithm

分类

天文与地球科学

引用本文复制引用

汪豪捷..基于GA-CNN-LSTM的库岸滑坡位移预测[J].陕西水利,2025,(10):18-21,4.

陕西水利

1673-9000

访问量0
|
下载量0
段落导航相关论文