| 注册
首页|期刊导航|数据采集与处理|大语言模型指导的多模态时序-语义预测框架

大语言模型指导的多模态时序-语义预测框架

叶诗敏 刘非菲 张岩

数据采集与处理2025,Vol.40Issue(5):1193-1206,14.
数据采集与处理2025,Vol.40Issue(5):1193-1206,14.DOI:10.16337/j.1004-9037.2025.05.007

大语言模型指导的多模态时序-语义预测框架

Large Language Model-Guided Multi-modal Time Series-Semantic Prediction Framework

叶诗敏 1刘非菲 1张岩2

作者信息

  • 1. 苏州工学院商学院,苏州 215500
  • 2. 厦门大学人工智能研究院,厦门 361005
  • 折叠

摘要

Abstract

Multi-modal prediction tasks typically require the simultaneous modeling of heterogeneous data,including text,images and structured numerical information,to achieve robust inference and explainable decision-making in complex environments.Traditional uni-modal or weak fusion methods struggle to consistently address semantic alignment,information complementation and cross-source reasoning,while the inherent black-box nature of deep models limits the result interpretability.Meanwhile,the large language model(LLM)has demonstrated strong capabilities in semantic understanding,instruction following,and reasoning,yet a gap remains in their performance for time series modeling,cross-modal alignment,and real-time knowledge integration.To address these challenges,this paper proposes a LLM-guided multi-modal time series-semantic prediction framework.By combining variational inference-based time series modeling with LLM-driven semantic analysis,the approach establishes a collaborative"temporal-semantic-decision"mechanism:The temporal module extracts historical behavior patterns using recurrent latent variables and attention mechanisms;the semantic module distills high-level semantics and interpretations through domain-specific language models and multi-modal encoders;and both components are jointly optimized via a learnable fusion module,which also provides uncertainty annotations and explainable reports.Experiments on the StockNet,CMIN-US,and CMIN-CN datasets demonstrate that the approach achieves an accuracy of 63.54%,an improvement of 5.31 percentage points over the best baseline and an Matthews correlation coefficient(MCC)elevated to 0.223.This study offers a unified paradigm for multi-modal time series prediction and underscores its promising application in the field of financial technology.

关键词

多模态/大语言模型/人工智能/预训练模型/时间序列预测

Key words

multi-modal/large language model(LLM)/artificial intelligence/pre-trained model/time series prediction

分类

信息技术与安全科学

引用本文复制引用

叶诗敏,刘非菲,张岩..大语言模型指导的多模态时序-语义预测框架[J].数据采集与处理,2025,40(5):1193-1206,14.

数据采集与处理

OA北大核心

1004-9037

访问量0
|
下载量0
段落导航相关论文