| 注册
首页|期刊导航|数据采集与处理|基于改进YOLOv8n的道路裂缝检测轻量化模型

基于改进YOLOv8n的道路裂缝检测轻量化模型

朱佳慧 刘艺 张登银

数据采集与处理2025,Vol.40Issue(5):1333-1347,15.
数据采集与处理2025,Vol.40Issue(5):1333-1347,15.DOI:10.16337/j.1004-9037.2025.05.018

基于改进YOLOv8n的道路裂缝检测轻量化模型

A Lightweight Road Crack Detection Model Based on Improved YOLOv8n

朱佳慧 1刘艺 1张登银1

作者信息

  • 1. 南京邮电大学物联网学院,南京 210003
  • 折叠

摘要

Abstract

To address the challenges of road crack appearance characteristics being susceptible to environmental interference,high miss detection rate of fine cracks,and limited computational resources of inspection equipment,a lightweight detection model,MCA-YOLO-A,is proposed.The model is based on YOLOv8n,replacing the original backbone with a lighter MobileNetV3 feature extraction network,and integrating a coordinate attention(CA)module that accurately captures spatial information,thereby enhancing the capability of feature extraction.Meanwhile,the Alpha-IOU loss function suitable for lightweight networks is introduced,which makes the overall performance of the network improve.In addition,a small target detection layer is added to improve the recognition accuracy of fine cracks.The average precision of mAP_0.5 and F1 score of MCA-YOLO-A model on road crack data sets are 0.930 and 0.893,respectively,which are 7.0%and 9.7%higher than that of the original YOLOv8n model,and the parameter quantity is only 6.0 M,which is 4.8%lower,and the detection speed reaches 95 frames/s.Experimental results demonstrate that the model is highly accurate,lightweight,and capable of generalization,making it more suitable for deployment in scenarios with limited computational resources such as embedded systems and mobile devices.

关键词

道路裂缝/图像检测/深度可分离卷积/YOLOv8/注意力模块/轻量化

Key words

road cracks/image detection/depthwise separable convolution/YOLOv8/attention module/lightweighting

分类

信息技术与安全科学

引用本文复制引用

朱佳慧,刘艺,张登银..基于改进YOLOv8n的道路裂缝检测轻量化模型[J].数据采集与处理,2025,40(5):1333-1347,15.

基金项目

国家自然科学基金(62471241) (62471241)

江苏省研究生科研与实践创新计划项目(KYCX23_1051). (KYCX23_1051)

数据采集与处理

OA北大核心

1004-9037

访问量0
|
下载量0
段落导航相关论文