| 注册
首页|期刊导航|现代电力|基于自适应秃鹰搜索算法的光伏最大功率点跟踪

基于自适应秃鹰搜索算法的光伏最大功率点跟踪

翟梓辰 缪书唯

现代电力2025,Vol.42Issue(5):919-927,9.
现代电力2025,Vol.42Issue(5):919-927,9.DOI:10.19725/j.cnki.1007-2322.2023.0252

基于自适应秃鹰搜索算法的光伏最大功率点跟踪

Maximum Power Point Tracking for Photovoltaic Systems Based on Adaptive Bald Eagle Search Algorithm

翟梓辰 1缪书唯1

作者信息

  • 1. 三峡大学电气与新能源学院,湖北省 宜昌市 443002
  • 折叠

摘要

Abstract

Under partial shading conditions,the P-V characteristic curve of the photovoltaic system shows multi-peak characteristics,which makes the traditional maximum power point tracking algorithm easy to fall into the local maximum power point,thus reducing its tracking efficiency.Therefore,this paper proposes an adaptive bald eagle search algorithm.Based on the traditional bald eagle search algorithm,the algorithm introduces Gaussian mixture adaptive walking strategy,progressive diving adaptive switching strategy and bald eagle swarm size adjustment mechanism to enhance the global search and local optimization ability of the algorithm and improve its convergence accuracy and speed.Under the Simulink simulation platform,the algorithm is applied to the maximum power tracking of a photovoltaic power generation system,and compared with the traditional bald eagle search algorithm,particle swarm optimization algorithm and grey wolf optimization algorithm.The results show that the proposed algorithm has faster tracking speed and higher accuracy than the existing three algorithms in four typical scenarios,and the power fluctuation in the tracking process is smaller,which can improve the power generation of photovoltaic system.

关键词

光伏系统/局部遮阴/最大功率点跟踪/自适应秃鹰搜索算法

Key words

photovoltaic system/partial shading/maximum power point tracking(MPPT)/adaptive bald eagle search

分类

信息技术与安全科学

引用本文复制引用

翟梓辰,缪书唯..基于自适应秃鹰搜索算法的光伏最大功率点跟踪[J].现代电力,2025,42(5):919-927,9.

现代电力

OA北大核心

1007-2322

访问量0
|
下载量0
段落导航相关论文