| 注册
首页|期刊导航|现代电力|基于时空混合注意力机制的超短时风电功率预测方法

基于时空混合注意力机制的超短时风电功率预测方法

黄贤明 郝雨辰 霍雪松 柴赟 彭程

现代电力2025,Vol.42Issue(5):928-936,9.
现代电力2025,Vol.42Issue(5):928-936,9.DOI:10.19725/j.cnki.1007-2322.2023.0246

基于时空混合注意力机制的超短时风电功率预测方法

An Ultra-short Term Wind Power Prediction Method Based on Spatio-temporal Hybrid Attention Mechanism

黄贤明 1郝雨辰 2霍雪松 2柴赟 2彭程3

作者信息

  • 1. 常熟理工学院电气与自动化工程学院,江苏省 苏州市 215500
  • 2. 国网江苏省电力有限公司,江苏省 南京市 210017
  • 3. 电子科技大学中山学院计算机学院,广东省 中山市 528400
  • 折叠

摘要

Abstract

In response to the challenges posed by poor forecasting accuracy of wind power and inadequate meteorological sensors in certain wind farms,a wind power prediction model algorithm independent of meteorological data is proposed.Firstly,the sliding window based method is utilized to split the data and construct the time sequence data.The one-dimensional convolution network and long short-term memory network(LSTM)are subsequently employed to extract spatial and time dimension features from time series data with long term dependence.Finally,a spatio-temporal hybrid attention mechanism is employed to fuse features and predict power.Through the case analysis of three-year data from a wind farm in eastern China,the practicability of the above prediction model is proved and the results are more accurate than those of convolutional neural network-long short-term memory(CNN-LSTM)model,CNN model and LSTM model.Both validity and practicability of the proposed prediction method are proved,providing substantial support for reliability analysis of power prediction in actual scenarios.

关键词

卷积神经网络/风电功率/功率预测/长短期记忆网络/时间序列

Key words

deep convolutional neural network/wind power/power prediction/long short-term memory network/time series

分类

信息技术与安全科学

引用本文复制引用

黄贤明,郝雨辰,霍雪松,柴赟,彭程..基于时空混合注意力机制的超短时风电功率预测方法[J].现代电力,2025,42(5):928-936,9.

基金项目

国网江苏省电力有限公司科技项目(J2021065).Project Supported by the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.(J2021065). (J2021065)

现代电力

OA北大核心

1007-2322

访问量0
|
下载量0
段落导航相关论文