| 注册
首页|期刊导航|智能系统学报|基于电容层析成像传感器的非接触材质识别研究

基于电容层析成像传感器的非接触材质识别研究

许晓丽 郭旭东 郑文栋 刘华平

智能系统学报2025,Vol.20Issue(5):1232-1242,11.
智能系统学报2025,Vol.20Issue(5):1232-1242,11.DOI:10.11992/tis.202408021

基于电容层析成像传感器的非接触材质识别研究

Electrical capacitance tomography sensor for contactless material recognition

许晓丽 1郭旭东 1郑文栋 2刘华平3

作者信息

  • 1. 上海理工大学健康科学与工程学院,上海 200082
  • 2. 天津理工大学电气工程与自动化学院,天津 300384
  • 3. 清华大学计算机科学与技术系,北京 100084
  • 折叠

摘要

Abstract

Electrical capacitance tomography(ECT),known for its rapid and nonintrusive characteristics,effectively avoids the optical interference problem commonly encountered in material property identification based on optical ima-ging technologies.However,conventional ECT sensor research has predominantly focused on solving the inverse prob-lem,with limited emphasis on achieving noncontact,nonintrusive material identification through permittivity distribu-tion analysis.To address this gap,this study introduces a planar ECT sensor designed for noncontact material recogni-tion.A material prediction model based on Bayesian-LightGBM is developed,significantly enhancing the predictive performance through Bayesian optimization algorithms.Experimental results demonstrate a high accuracy rate of 95.83%when in contact and 85.28%accuracy within a noncontact range of 20 mm from the sensor.This indicates that robots can precisely acquire material information in the environment in a noncontact and nonintrusive manner,paving the way for new possibilities in the application of robotics technology in complex environments.

关键词

电容层析成像/平面电容传感器/传感器建模/非接触识别/材质识别/分类算法/LightGBM/贝叶斯优化

Key words

electrical capacitance tomography/planar capacitance sensor/sensor modeling/untouched recognition/ma-terial recognition/classification algorithm/LightGBM/Bayesian optimization

分类

信息技术与安全科学

引用本文复制引用

许晓丽,郭旭东,郑文栋,刘华平..基于电容层析成像传感器的非接触材质识别研究[J].智能系统学报,2025,20(5):1232-1242,11.

基金项目

国家自然科学基金国际合作重点项目(62120106005). (62120106005)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文