| 注册
首页|期刊导航|智能系统学报|多双曲空间传递图解耦表示学习

多双曲空间传递图解耦表示学习

郑帅 彭奏章 朱振峰 赵耀

智能系统学报2025,Vol.20Issue(5):1243-1255,13.
智能系统学报2025,Vol.20Issue(5):1243-1255,13.DOI:10.11992/tis.202409034

多双曲空间传递图解耦表示学习

Graph disentanglement representation learning based on propagation in multiple hyperbolic spaces

郑帅 1彭奏章 1朱振峰 1赵耀1

作者信息

  • 1. 北京交通大学计算机科学与技术学院,北京 100044||现代信息科学与网络技术北京市重点实验室,北京 100044
  • 折叠

摘要

Abstract

There are two salient issues of existing graph representation learning methods.First,there is a dearth of fine-grained neighborhood modeling,which neglects the multifaceted semantic entanglements in the neighborhood struc-tures.Second,the spatial metric employed in graph representation learning presents a significant challenge,since Euc-lidean space may not constitute the optimal framework for quantifying node representations.To solve these challenges,this study proposes a novel representation propagation and prediction mechanism within multiple hyperbolic spaces,thereby achieving disentangled graph representation learning under multifaceted hyperbolic spatial metrics.Within the proposed framework,the original topological structure is iteratively refined through node representations,yielding propagation matrices embedded in a hyperbolic space.Furthermore,based on a mixture-of-experts design,hyperbolic la-bel propagation networks at different resolutions are treated as expert networks,enabling the discovery of node connec-tion patterns induced by different latent factors.Experimental results on multiple real-world datasets show that the pro-posed method achieves classification accuracies of 32.3%and 59.5%on the Squirrel and Crocodile datasets,respect-ively.Additionally,visualization experiments further demonstrate the effectiveness of the proposed approach.

关键词

图表示学习/图解耦/双曲空间/图神经网络/标签传递/混合专家系统/拓扑细化/多分辨率

Key words

graph representation learning/graph disentanglement/hyperbolic space/graph neural networks/label propagation/mixture of experts/topology refinement/multiresolution

分类

信息技术与安全科学

引用本文复制引用

郑帅,彭奏章,朱振峰,赵耀..多双曲空间传递图解耦表示学习[J].智能系统学报,2025,20(5):1243-1255,13.

基金项目

中央高校基本科研业务费项目(2024XKRC088) (2024XKRC088)

国家自然科学基金项目(62476022) (62476022)

北京市自然科学基金青年科学基金项目(4254085). (4254085)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文