| 注册
首页|期刊导航|现代情报|基于深度域适应方法的非结构化摘要功能识别研究

基于深度域适应方法的非结构化摘要功能识别研究

施顺顺 苟震宇 张琳 黄颖

现代情报2025,Vol.45Issue(10):3-15,13.
现代情报2025,Vol.45Issue(10):3-15,13.DOI:10.3969/j.issn.1008-0821.2025.10.001

基于深度域适应方法的非结构化摘要功能识别研究

Research on Non-Structural Abstract Function Recognition Based on Deep Domain Adaptation Method

施顺顺 1苟震宇 1张琳 2黄颖2

作者信息

  • 1. 武汉大学信息管理学院,湖北 武汉 430072||武汉大学科教管理与评价中心,湖北 武汉 430072
  • 2. 武汉大学信息管理学院,湖北 武汉 430072||武汉大学科教管理与评价中心,湖北 武汉 430072||比利时鲁汶大学ECOOM研究中心,鲁汶 B-3000
  • 折叠

摘要

Abstract

[Purpose/Significance]The identification of structural functions in academic abstracts involves recognizing specific functions such as research background,methods,results,and conclusions from abstracts.This study addresses the issues of heavy data annotation work,insufficient domain transfer capability,and poor model interpretability that are commonly present in the task of non-structural abstract function recognition.[Method/Process]Using a deep domain adap-tation method based on the concept of transfer learning to construct a model for recognizing structural functions in abstracts.Specifically,employed ALBERT,a pre-trained language model to extract contextual features from abstracts.Then,under the joint action of the feature extractor,domain discriminator,and category classifier,the structural func-tional feature knowledge was transferred from the source domain with labeled data to the target domain with unlabeled data,aiming to achieve the cross-domain transferability without the need for annotated training samples.In addition,the SHAP method was used to provide interpretability analysis for the model's output results,and experiments were conducted on both the target domain(COVID-19 dataset)and the source domain(PubMed 20K dataset).[Result/Conclusion]The model based on the deep domain adaptation method achieves better recognition performance than the baseline models,with the superior performance and better interpretability on the"methods"and"results"functions.The experimental results indi-cate that the optimal model can achieve knowledge transfer from the source domain to the target domain in an unsupervised learning manner,reducing the model's dependence on data annotation and enhancing the model's portability for this task.

关键词

摘要结构/功能识别/领域自适应/深度学习/无监督学习

Key words

abstract structure/function recognition/domain adaptation/deep learning/unsupervised learning

分类

社会科学

引用本文复制引用

施顺顺,苟震宇,张琳,黄颖..基于深度域适应方法的非结构化摘要功能识别研究[J].现代情报,2025,45(10):3-15,13.

基金项目

国家自然科学基金面上项目"从测度到理解:跨学科研究的成果分类、合作模式与影响扩散研究"(项目编号:72374160). (项目编号:72374160)

现代情报

OA北大核心

1008-0821

访问量0
|
下载量0
段落导航相关论文