| 注册
首页|期刊导航|信息安全研究|基于双置信度样本选择的鲁棒恶意加密流量检测方法

基于双置信度样本选择的鲁棒恶意加密流量检测方法

王一彤 吴礼发 张伯雷

信息安全研究2025,Vol.11Issue(10):924-932,9.
信息安全研究2025,Vol.11Issue(10):924-932,9.DOI:10.12379/j.issn.2096-1057.2025.10.07

基于双置信度样本选择的鲁棒恶意加密流量检测方法

Robust Malicious Encrypted Traffic Detection Method Based on Dual Confidence Sample Selection

王一彤 1吴礼发 1张伯雷1

作者信息

  • 1. 南京邮电大学计算机学院、软件学院、网络空间安全学院 南京 210023
  • 折叠

摘要

Abstract

In the task of detecting malicious encrypted traffic,the existence of noise tags seriously affects the generalization ability and detection accuracy of the model.To solve the above problems,a noise label learning method based on DC ASS(dual-confidence adaptive sample selection)is proposed to realize robust malicious encryption traffic detection.Firstly,the low dimensional features of samples are extracted by self encoder,and the feature confidence of samples is constructed.Then,the label confidence of samples is evaluated according to their performance in classification training.Finally,an adaptive selection threshold is proposed to select samples based on the dual confidence of feature space and label space,and filter noise samples dynamically to improve the robustness of the model.Experiments on CIRA-CIC-DoHBrw-2020 dataset show that the proposed method has good performance and stability in dealing with noise labels.The F1 scores of the method reach 86.686%,86.749%,83.199%respectively when the noise rate is 20%,30%,40%.Compared with the existing three methods,the method proposed in this paper shows the best performance under different noise rates,with the average performance improvement of 18.89%,37.34%,6.32%respectively.

关键词

噪声标签学习/恶意加密流量检测/样本选择/深度学习/自编码器

Key words

noise label learning/malicious encrypted traffic detection/sample selection/deep learning/autoencoder

分类

信息技术与安全科学

引用本文复制引用

王一彤,吴礼发,张伯雷..基于双置信度样本选择的鲁棒恶意加密流量检测方法[J].信息安全研究,2025,11(10):924-932,9.

信息安全研究

OA北大核心

2096-1057

访问量0
|
下载量0
段落导航相关论文