| 注册
首页|期刊导航|信息安全研究|不可感知的人脸属性编辑伪造主动防御方法

不可感知的人脸属性编辑伪造主动防御方法

陈北京 冯逸凡 范春年

信息安全研究2025,Vol.11Issue(10):941-949,9.
信息安全研究2025,Vol.11Issue(10):941-949,9.DOI:10.12379/j.issn.2096-1057.2025.10.09

不可感知的人脸属性编辑伪造主动防御方法

Imperceptible Proactive Defense Method Against Face Attribute Editing

陈北京 1冯逸凡 2范春年2

作者信息

  • 1. 数字取证教育部工程研究中心(南京信息工程大学) 南京 210044||江苏省大气环境与装备技术协同创新中心(南京信息工程大学) 南京 210044
  • 2. 数字取证教育部工程研究中心(南京信息工程大学) 南京 210044
  • 折叠

摘要

Abstract

Although the face attribute editing forgery active defense method based on generative adversarial network(GAN)generates adversarial perturbations faster than the gradient attack-based methods,existing methods still fail in balancing the proactive defense effect with the imperceptibility of generated perturbations.Therefore,this paper proposed a highly imperceptible proactive defense method against face attribute editing based on GAN.To enhance the imper-ceptibility of the perturbations,the method designed a high-frequency information compensation mechanism to enable the generator to generate more high-frequency perturbations that are less sensitive to the human eye.To improve the proactive defense performance of generated pertur-bations,the proposed method also designed a multi-level dense connection mechanism for reducing semantic loss during the encoding process.Meanwhile,the method introduced face saliency adversarial loss in training stage to enable perturbations to disrupt face forgery areas better.The experiments were conducted in both single-model and cross-model defense scenarios.The results indicate that compared to existing methods,the proposed method generates more imperceptible adversarial perturbations and obtains high success rates for defending against target models.

关键词

深度伪造/对抗样本/主动防御/生成对抗网络/不可感知性

Key words

deepfake/adversarial example/proactive defense/generative adversarial network/imperceptibility

分类

信息技术与安全科学

引用本文复制引用

陈北京,冯逸凡,范春年..不可感知的人脸属性编辑伪造主动防御方法[J].信息安全研究,2025,11(10):941-949,9.

基金项目

国家自然科学基金项目(62072251) (62072251)

信息安全研究

OA北大核心

2096-1057

访问量0
|
下载量0
段落导航相关论文