| 注册
首页|期刊导航|中国电机工程学报|数据驱动算法的电力信息物理系统FDIA定位检测

数据驱动算法的电力信息物理系统FDIA定位检测

席磊 彭典名 曹伟 陈洪军 白芳岩 王文卓

中国电机工程学报2025,Vol.45Issue(18):7110-7122,中插8,14.
中国电机工程学报2025,Vol.45Issue(18):7110-7122,中插8,14.DOI:10.13334/j.0258-8013.pcsee.240412

数据驱动算法的电力信息物理系统FDIA定位检测

FDIA Location Detection for Data-driven Algorithms in Cyber-physical Power Systems

席磊 1彭典名 1曹伟 2陈洪军 1白芳岩 1王文卓1

作者信息

  • 1. 梯级水电站运行与控制湖北省重点实验室(三峡大学电气与新能源学院),湖北省宜昌市 443002
  • 2. 阳光电源股份有限公司,安徽省 合肥市 230088
  • 折叠

摘要

Abstract

False data injection attacks(FDIA)seriously threaten the security of cyber-physical power systems(CPPS).For the problem that the traditional detection methods are unable to identify attacks accurately and locate the attacked buses quickly,a FDIA localization method is proposed based on data-driven algorithms in CPPS.Firstly,the kernel extreme learning machine is combined with the autoencoder to form a multi-layer kernel extreme learning machine,which learns the power measurement data layer by layer.Then,the Harris hawk optimization,which incorporates the tent mapping and golden sine strategy,is utilized to optimize the parameters of the multi-layer kernel extreme learning machine,in order to improve the optimization speed and convergence accuracy.Finally,the proposed algorithm is verified by simulation in IEEE-14 and IEEE-118 bus test systems.The results show that the proposed algorithm has better detection speed,accuracy,precision,recall,and F1-Sorce compared to other algorithms,and can locate the attacked buses quickly and accurately.

关键词

虚假数据注入攻击/电力信息物理系统/定位检测/哈里斯鹰优化算法/核极限学习机

Key words

false data injection attacks/cyber-physical power systems/location detection/Harris hawk optimization/kernel extreme learning machine

分类

信息技术与安全科学

引用本文复制引用

席磊,彭典名,曹伟,陈洪军,白芳岩,王文卓..数据驱动算法的电力信息物理系统FDIA定位检测[J].中国电机工程学报,2025,45(18):7110-7122,中插8,14.

基金项目

国家自然科学基金项目(52277108) (52277108)

湖北省高等学校优秀中青年科技创新团队计划项目(T2020006).Project Supported by National Natural Science Foundation of China(52277108) (T2020006)

Excellent Young and Middle-aged Science and Technology Innovation Team Project of Hubei Universities(T2020006). (T2020006)

中国电机工程学报

OA北大核心

0258-8013

访问量1
|
下载量0
段落导航相关论文