| 注册
首页|期刊导航|智能系统学报|融合多维特征的电诈犯罪时空预测研究

融合多维特征的电诈犯罪时空预测研究

周璟昊 石磊 石拓 陈鹏

智能系统学报2025,Vol.20Issue(5):1112-1122,11.
智能系统学报2025,Vol.20Issue(5):1112-1122,11.DOI:10.11992/tis.202412025

融合多维特征的电诈犯罪时空预测研究

Spatiotemporal prediction of telecommunications network fraud crime with multidimensional feature fusion

周璟昊 1石磊 2石拓 3陈鹏1

作者信息

  • 1. 中国人民公安大学信息网络安全学院,北京 102600
  • 2. 中国传媒大学媒体融合与传播国家重点实验室,北京 100024
  • 3. 北京警察学院公安管理系,北京 102202||北京警察学院北京市公安局警察学院警务情报与数据智能标准实验室,北京 102202
  • 折叠

摘要

Abstract

Spatiotemporal prediction of telecommunications fraud crimes can substantially enhance targeted antifraud efforts.However,existing methods suffer from poor performance due to sparse and periodic incident time-series data,as well as the heterogeneity of spatial environmental factors.Aiming to address these challenges,this paper proposes a multidimensional feature-integrated telecom fraud spatiotemporal prediction(MF-TSP)model.First,a spatial feature se-lection module was constructed by integrating regional topological graphs to effectively incorporate neighborhood crime patterns.A time-sliding window technique,combined with a multidimensional temporal feature extraction module and an inverted Transformer,addresses data sparsity while capturing periodicity,global dependencies,and complex mul-tivariate correlations.Furthermore,deep spatiotemporal fusion and nonlinear mapping notably improve prediction accur-acy.Experiments on real-world telecom fraud data from City B demonstrate that MF-TSP outperforms seven baseline models under three different input time-step conditions.

关键词

电诈犯罪时空预测/多维特征/时空特征融合/空间环境特征因子/图注意力网络/时间滑动窗口/iTransformer

Key words

spatiotemporal fraud prediction/multidimensional features/spatio-temporal feature fusion/spatial environ-mental feature factors/graph attention networks/time-sliding window/iTransformer

分类

信息技术与安全科学

引用本文复制引用

周璟昊,石磊,石拓,陈鹏..融合多维特征的电诈犯罪时空预测研究[J].智能系统学报,2025,20(5):1112-1122,11.

基金项目

国家自然科学基金项目(62406023). (62406023)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文