| 注册
首页|期刊导航|中国水产科学|基于LASSO回归方法的南太平洋长鳍金枪鱼补充量预测

基于LASSO回归方法的南太平洋长鳍金枪鱼补充量预测

王扬 朱江峰 张帆 耿喆

中国水产科学2025,Vol.32Issue(7):914-923,10.
中国水产科学2025,Vol.32Issue(7):914-923,10.DOI:10.12264/JFSC2025-0024

基于LASSO回归方法的南太平洋长鳍金枪鱼补充量预测

Prediction of South Pacific albacore Thunnus alalunga recruitment based on the LASSO regression method

王扬 1朱江峰 2张帆 2耿喆1

作者信息

  • 1. 上海海洋大学,海洋生物资源与管理学院,上海 201306||上海海洋大学,农业农村部大洋渔业可持续利用重点实验室,上海 201306
  • 2. 上海海洋大学,海洋生物资源与管理学院,上海 201306||上海海洋大学,农业农村部大洋渔业可持续利用重点实验室,上海 201306||上海海洋大学,国家远洋渔业工程技术研究中心,上海 201306
  • 折叠

摘要

Abstract

Recruitment process serves as a critical biological foundation for sustainable resource maintenance.Understanding and accurately predicting the variability in recruitment has become a core challenge in fisheries management.Previous methods for predicting the recruitment of South Pacific albacore(Thunnus alalunga)have challenges in handling multicollinearity among environmental variables and identifying key drivers,often leading to model overfit and reduced predictive accuracy.To address these issues,this study applied the LASSO regression algorithm to optimize variable selection and improve prediction accuracy.Models were developed based on observational data from 2000 to 2017,and then coupled with CMIP6 multi-model climate projections,to predict recruitment trends from 2018 to 2100.The results indicated that LASSO effectively eliminated variable redundancy through shrinkage estimation,enhancing model prediction accuracy.The optimal model explained 45.9%of variance,with sea surface temperature(SST)and mixed layer depth(MLD)identified as critical predictors.Projections revealed that under high-emission scenarios(SSP5-8.5,SSP3-7.0),the population recruitment by the 2070s would approach the ecological threshold lower limit(near zero),significantly elevating collapse risks.In contrast,under the low-carbon pathway(SSP1-2.6),recruitment exhibited persistent decline trends.This study provided with an effective methodological framework for fisheries stock prediction and variable selection,while establishing a climate-recruitment coupled prediction model to provide quantitative decision-making support for formulating adaptive management strategies and mitigating population collapse risks.

关键词

补充量预测/LASSO方法/CMIP6/长鳍金枪鱼

Key words

recruitment prediction/LASSO method/CMIP6/albacore

分类

农业科技

引用本文复制引用

王扬,朱江峰,张帆,耿喆..基于LASSO回归方法的南太平洋长鳍金枪鱼补充量预测[J].中国水产科学,2025,32(7):914-923,10.

基金项目

国家重点研发计划项目(2024YFD2400602) (2024YFD2400602)

农业农村部2024年度全球重要鱼种资源动态监测评估项目(D-8025-24-5001). (D-8025-24-5001)

中国水产科学

OA北大核心

1005-8737

访问量0
|
下载量0
段落导航相关论文