| 注册
首页|期刊导航|燕山大学学报|基于MFCC-LSTM的低速齿轮故障诊断方法研究

基于MFCC-LSTM的低速齿轮故障诊断方法研究

张敬超 胡皓 李晨辉 宋金华 江国乾 李英伟

燕山大学学报2025,Vol.49Issue(5):404-413,10.
燕山大学学报2025,Vol.49Issue(5):404-413,10.DOI:10.3969/j.issn.1007-791X.2025.05.003

基于MFCC-LSTM的低速齿轮故障诊断方法研究

Research on low-speed gear fault diagnosis method based on MFCC-LSTM

张敬超 1胡皓 1李晨辉 1宋金华 1江国乾 2李英伟1

作者信息

  • 1. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004||燕山大学 河北省信息传输与信号处理重点实验室,河北 秦皇岛 066004
  • 2. 燕山大学 电气工程学院,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

To address the challenges of acquiring subtle fault signal features and low fault diagnosis accuracy in low-speed gear operation,a method for diagnosing low-speed gear faults is proposed,which combines Mel-frequency cepstrum coefficient(MFCC)with long short-term memory(LSTM)network.Firstly,the low-frequency energy of the input signal is extracted by MFCC,and then the feature vectors are input into the LSTM network for training to obtain the MFCC-LSTM model,which plays the advantages of MFCC for low-frequency energy extraction and LSTM network for long sequence data processing,and enhances the accuracy of low-speed gear fault diagnosis.Finally,the performance of the proposed method is verified by acquiring acoustic sensing signals of low-speed gear operation through the rotating machinery fault simulation experimental platform,and the optimal number of Mel filter groups of MFCC is obtained from the experiments,and comparative experiments and ablation experiments are carried out by using the fault diagnosis accuracy rate as the model evaluation index.The results show that the average accuracy of MFCC-LSTM for low-speed gear fault diagnosis is as high as 99.14%,which is better than that of the comparison method,and MFCC-LSTM has a better recognition effect on low-speed gear faults.

关键词

低速齿轮/故障诊断/梅尔倒谱系数/长短期记忆网络

Key words

low-speed gears/fault diagnosis/Mel-frequency cepstrum coefficient/long short-term memory network

分类

机械制造

引用本文复制引用

张敬超,胡皓,李晨辉,宋金华,江国乾,李英伟..基于MFCC-LSTM的低速齿轮故障诊断方法研究[J].燕山大学学报,2025,49(5):404-413,10.

基金项目

河北省军民融合科技创新计划资助项目(SJMYF202322) (SJMYF202322)

河北省重点实验室项目(202250701010046) (202250701010046)

燕山大学学报

OA北大核心

1007-791X

访问量1
|
下载量0
段落导航相关论文