| 注册
首页|期刊导航|智能科学与技术学报|融合证据分析的贝叶斯神经网络虚假信息检测方法

融合证据分析的贝叶斯神经网络虚假信息检测方法

陈君海 项凤涛 黎拓新 罗翔宇

智能科学与技术学报2025,Vol.7Issue(3):316-328,13.
智能科学与技术学报2025,Vol.7Issue(3):316-328,13.DOI:10.11959/j.issn.2096-6652.202533

融合证据分析的贝叶斯神经网络虚假信息检测方法

Evidence-aware Bayesian neural networks for fake news detection

陈君海 1项凤涛 1黎拓新 1罗翔宇1

作者信息

  • 1. 国防科技大学智能科学学院,湖南 长沙 410073
  • 折叠

摘要

Abstract

The popularity of social media has led to accelerated fake news propagation and expanded influence.The ex-tensive spread of fake news not only disrupts social order but may also trigger mass incidents,posing a potential threat to national security and social stability.Consequently,the development of efficient fake news detection tools and techniques has become increasingly critical.To address this challenge,an evidence-aware Bayesian neural networks for fake news de-tection(EBNN-FND)method was proposed.This model quantifies uncertainties in both the detection model and the data,thereby improving the reliability of prediction results.The EBNN-FND model consists of four modules:a text embedding module,a feature processing module,a news-evidence interaction module,and a feature fusion module.Thereby,it can ef-fectively integrate the features of news context and related evidence.Experiments on public datasets demonstrate that the EBNN-FND model significantly outperforms existing baseline models in fake news detection tasks,showcasing its effi-ciency and robustness.It not only provides a new research perspective for the field of rumor detection but also offers a vi-able technical solution to address uncertainty issues in information dissemination.

关键词

贝叶斯神经网络/变分推理/无偏估计/虚假信息检测

Key words

Bayesian neural networks/variational inference/unbiased estimation/fake news detection

分类

信息技术与安全科学

引用本文复制引用

陈君海,项凤涛,黎拓新,罗翔宇..融合证据分析的贝叶斯神经网络虚假信息检测方法[J].智能科学与技术学报,2025,7(3):316-328,13.

基金项目

国家自然科学基金项目(No.62473371)The National Natural Science Foundation of China(No.62473371) (No.62473371)

智能科学与技术学报

2096-6652

访问量0
|
下载量0
段落导航相关论文