| 注册
首页|期刊导航|智能科学与技术学报|RadiFlow:AI Agents重构放射科工作流程

RadiFlow:AI Agents重构放射科工作流程

张濛濛 薛华丹 王飞跃 丛福泽 王静 张慧 李娟娟 倪清桦 丁炫婷 田永林 吕宜生

智能科学与技术学报2025,Vol.7Issue(3):396-407,12.
智能科学与技术学报2025,Vol.7Issue(3):396-407,12.DOI:10.11959/j.issn.2096-6652.202535

RadiFlow:AI Agents重构放射科工作流程

RadiFlow:AI agents reconstructing radiology workflow

张濛濛 1薛华丹 2王飞跃 3丛福泽 2王静 4张慧 5李娟娟 6倪清桦 7丁炫婷 8田永林 6吕宜生6

作者信息

  • 1. 中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190||中国科学院大学人工智能学院,北京 100049
  • 2. 中国医学科学院北京协和医院放射科,北京 100730
  • 3. 中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190||澳门科技大学创新工程学院,澳门 999078||中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京 100190
  • 4. 中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190||澳门科技大学创新工程学院,澳门 999078
  • 5. 北京交通大学计算机科学与技术学院,北京 100044
  • 6. 中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190
  • 7. 澳门科技大学创新工程学院,澳门 999078
  • 8. 清华大学信息科学技术学院,北京 100084
  • 折叠

摘要

Abstract

With the rapid advancement of modern medicine and the increasing demand for clinical diagnosis and treat-ment,radiology,as a core department of clinical diagnostics,faces multiple challenges.These are particularly reflected in the complexity of patient scheduling across multi-device environments,workflow inefficiencies caused by manual opera-tions,the lack of multimodal clinical information integration for diagnostic reasoning,and the time-consuming nature of report writing.To address these issues,RadiFlow,an end-to-end intelligent radiology workflow system based on Agentic AI,was proposed.The system was composed of four cooperative agents:scheduling agents,radiological examination agents,diagnostic reasoning agents,and report generation and interpretation agents.Through agents collaboration,Radi-Flow can efficiently handle complex patient scheduling and cross-regional equipment allocation,achieve standardized and fault-tolerant imaging acquisition,provide accurate diagnostic assistance,and automatically generate and interpret standardized reports.However,this work remains a preliminary research report,validated through case studies.RadiFlow demonstrates significant potential for improving radiology efficiency,diagnostic accuracy,patient satisfaction,and reducing the workload of healthcare professionals.Future work will extend this framework to build a multi-agent radiology system for real-world deployment and validation,aiming to provide innovative insights into developing a more intelligent and ef-ficient radiology practice.

关键词

智能体/放射科/人工智能/大语言模型

Key words

agent/radiology/artificial intelligence/large language model

分类

信息技术与安全科学

引用本文复制引用

张濛濛,薛华丹,王飞跃,丛福泽,王静,张慧,李娟娟,倪清桦,丁炫婷,田永林,吕宜生..RadiFlow:AI Agents重构放射科工作流程[J].智能科学与技术学报,2025,7(3):396-407,12.

基金项目

国家自然科学基金项目(No.82372051) (No.82372051)

澳门特别行政区科学与技术发展基金(No.0093/2023/RIA2,No.0145/2023/RIA3,No.0157/2024/RIA2) (No.0093/2023/RIA2,No.0145/2023/RIA3,No.0157/2024/RIA2)

北京市自然科学基金海淀联合基金(No.L222099) (No.L222099)

首都卫生发展科研专项(No.2024-2-4015) (No.2024-2-4015)

四川省科技厅重点研发计划项目(No.2024YFHZ0011)The National Natural Science Foundation of China(No.82372051),The Science and Technology Develop-ment Fund,Macao SAR(No.0093/2023/RIA2,No.0145/2023/RIA3,No.0157/2024/RIA2),Beijing Natural Science Foundation(No.L222099),Capital's Funds for Health Improvement and Research(No.2024-2-4015),Sichuan Key-Area Research and Develop-ment Program(No.2024YFHZ0011) (No.2024YFHZ0011)

智能科学与技术学报

2096-6652

访问量0
|
下载量0
段落导航相关论文