| 注册
首页|期刊导航|兵工自动化|基于数字孪生的航空发动机故障预测与健康管理技术研究综述

基于数字孪生的航空发动机故障预测与健康管理技术研究综述

李思雨 赵鹏 程中华 岳光 李雪 闫云斌 韩凯 郭鹏 黄振亮 范佳慧

兵工自动化2025,Vol.44Issue(9):6-12,27,8.
兵工自动化2025,Vol.44Issue(9):6-12,27,8.DOI:10.7690/bgzdh.2025.09.002

基于数字孪生的航空发动机故障预测与健康管理技术研究综述

Review of Aero-engine Fault Prognostics and Health Management Technology Based on Digital Twin

李思雨 1赵鹏 2程中华 3岳光 4李雪 5闫云斌 3韩凯 3郭鹏 2黄振亮 2范佳慧6

作者信息

  • 1. 陆军工程大学石家庄校区,石家庄 050003||山西省军区,太原 030013
  • 2. 山西省军区,太原 030013
  • 3. 陆军工程大学石家庄校区,石家庄 050003
  • 4. 太原工业学院自动化系,太原 030008
  • 5. 天津市第五十五中学,天津 300000
  • 6. 武警山西总队,太原 030012
  • 折叠

摘要

Abstract

According to the fault characteristics of aero-engine,the existing data conditions and the requirements of health management,the fault prediction and health management(PHM)at home and abroad are studied and analyzed.By covering condition monitoring and analysis,sub-health state diagnosis,performance decline trend tracking and analysis,fault prediction and life management,the predictive diagnosis and corresponding maintenance support of the engine are realized,so as to improve the safety of the flight mission and the reliability of the plan execution.The results show that the analysis can lay the foundation for continuous aero-engine health management research and provide technical support for the real meaning of condition-based maintenance.

关键词

数字孪生/航空发动机/装备维修/故障预测与健康管理/视情维修

Key words

digital twin/aero-engine/equipment maintenance/prognostics and health management/condition-based maintenance

分类

信息技术与安全科学

引用本文复制引用

李思雨,赵鹏,程中华,岳光,李雪,闫云斌,韩凯,郭鹏,黄振亮,范佳慧..基于数字孪生的航空发动机故障预测与健康管理技术研究综述[J].兵工自动化,2025,44(9):6-12,27,8.

兵工自动化

OA北大核心

1006-1576

访问量2
|
下载量0
段落导航相关论文