| 注册
首页|期刊导航|兵工自动化|基于知识图谱嵌入的音乐主题推荐算法优化算法

基于知识图谱嵌入的音乐主题推荐算法优化算法

刘灵凡

兵工自动化2025,Vol.44Issue(9):57-61,5.
兵工自动化2025,Vol.44Issue(9):57-61,5.DOI:10.7690/bgzdh.2025.09.012

基于知识图谱嵌入的音乐主题推荐算法优化算法

Optimization of Music Theme Recommendation Algorithm Based on Knowledge Graph Embedding

刘灵凡1

作者信息

  • 1. 武汉设计工程学院成龙影视传媒学院,武汉 430205
  • 折叠

摘要

Abstract

In order to solve the problems in the field of music recommendation,such as the difficulty of multi-source heterogeneous data integration,insufficient semantic association mining and insufficient accuracy of personalized recommendation,a recommendation algorithm based on knowledge mapping and deep learning is proposed.Through dynamic crawler technology and UIE intelligent extraction framework,a multi-dimensional music data system is constructed,and the precise construction of knowledge map is realized by using the dual integration strategy of"semantic computing+word form matching".The TransR model is introduced to embed the deep semantics of knowledge map,and the"content-behavior"dual-channel recommendation model is constructed based on the user's historical behavior characteristics.The experimental results show that the proposed algorithm is significantly superior to the existing recommendation algorithms in the key indicators of recommendation accuracy,ranking rationality and user satisfaction,and the research results not only provide a new technical path for music recommendation,but also verify the unique role of knowledge mapping in improving the interpretability of recommendation systems.

关键词

爬虫技术/自回归算法/知识融合算法/TransR算法/音乐主题评价矩阵

Key words

crawler technology/autoregressive algorithm/knowledge fusion algorithm/TransR algorithm/music theme evaluation matrix

分类

信息技术与安全科学

引用本文复制引用

刘灵凡..基于知识图谱嵌入的音乐主题推荐算法优化算法[J].兵工自动化,2025,44(9):57-61,5.

兵工自动化

OA北大核心

1006-1576

访问量0
|
下载量0
段落导航相关论文