| 注册
首页|期刊导航|重庆理工大学学报|复杂道路场景中的感受野优化目标检测研究

复杂道路场景中的感受野优化目标检测研究

张瑞乾 秦慧军 陈勇 袁旭浩 周若轩

重庆理工大学学报2025,Vol.39Issue(17):23-30,8.
重庆理工大学学报2025,Vol.39Issue(17):23-30,8.DOI:10.3969/j.issn.1674-8425(z).2025.09.003

复杂道路场景中的感受野优化目标检测研究

Research on receptive field optimization object detection in complex road scenes

张瑞乾 1秦慧军 1陈勇 2袁旭浩 1周若轩1

作者信息

  • 1. 北京信息科技大学机电工程学院,北京 100192
  • 2. 北京信息科技大学机电工程学院,北京 100192||新能源汽车北京实验室,北京 100192
  • 折叠

摘要

Abstract

To address the insufficient detection and weak generalization of small and occluded targets in complex traffic environments,an optimized model based on YOLOv8,named YOLOv8-MS,is developed.First,a lightweight receptive field enhancement module MGSmodule is proposed to optimize the C2f module,improving the efficiency and accuracy of feature extraction.Then,the separation and enhanced attention module SEAM is introduced,which effectively focuses on the areas affected by the concentration of the group,thereby improving the model's detection of small targets.Finally,a downsampling feature extractor is specifically designed for small targets,aiming to reduce the false detection and missed detection rates of small targets and further improve detection accuracy.Verified on the KITTI dataset,the improved algorithm improves P,R,mAP50,and mAP50-95 compared to the benchmark model YOLOv8n by 0.9%,6.3%,5.7%,and 4.8%respectively.Meanwhile,the model is validated on the VisDrone dataset.It improves P,R,mAP50,and mAP50-95 by 2.5%,2.3%,2.6%,and 1.6%respectively,demonstrating fairly good generalization and robustness.

关键词

自动驾驶/小目标检测/注意力机制/YOLOv8n

Key words

autonomous driving/small target detection/attention mechanism/YOLOV8n

分类

信息技术与安全科学

引用本文复制引用

张瑞乾,秦慧军,陈勇,袁旭浩,周若轩..复杂道路场景中的感受野优化目标检测研究[J].重庆理工大学学报,2025,39(17):23-30,8.

基金项目

国家自然科学基金面上项目(52077007) (52077007)

新能源汽车北京实验室建设项目(PXM2020_014224) (PXM2020_014224)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文