| 注册
首页|期刊导航|重庆理工大学学报|基于TomatoVit的番茄病害分类与分级研究

基于TomatoVit的番茄病害分类与分级研究

孔祥源 王一群 缪祎晟 陈雯柏 赵春江

重庆理工大学学报2025,Vol.39Issue(17):133-141,9.
重庆理工大学学报2025,Vol.39Issue(17):133-141,9.DOI:10.3969/j.issn.1674-8425(z).2025.09.017

基于TomatoVit的番茄病害分类与分级研究

Research on tomato disease detection based on tomatovit

孔祥源 1王一群 1缪祎晟 2陈雯柏 1赵春江2

作者信息

  • 1. 北京信息科技大学自动化学院,北京 100192
  • 2. 北京市农林科学院信息技术研究中心,北京 100097
  • 折叠

摘要

Abstract

To address the challenges of identifying diseases in tomato cultivation,such as detection costs,strong subjectivity and poor timeliness,this paper proposes a tomato disease classification and grading method based on Vision Transformer.A novel model,TomatoVit,is introduced,which consists of three core modules:(1)a hybrid backbone network based on ResNet-50 and Vision Transformer for extracting disease features;(2)a Feature Self-Validation(FSV)module that enhances the model's ability to recognize subtle variations in disease features through token replacement and prediction mechanisms;and(3)a Multi-Scale Global-Local Attention(MSGL)module,which combines global and local attention mechanisms to better capture the fine-grained features of disease variations.This approach transforms tomato disease detection from simple classification to severity evaluation,subdividing eight common tomato diseases into three stages:healthy,early,and severe stage.It enables monitoring of disease progression.Experiments conducted on a tomato disease dataset comprising 18 categories demonstrate the proposed model achieves an accuracy of 89.79%and an F1-score of 0.90,outperforming other methods.

关键词

图像分类/视觉Transformer/番茄病害分类/病害分级

Key words

image classification/vision transformer/tomato disease classification/disease severity grading

分类

信息技术与安全科学

引用本文复制引用

孔祥源,王一群,缪祎晟,陈雯柏,赵春江..基于TomatoVit的番茄病害分类与分级研究[J].重庆理工大学学报,2025,39(17):133-141,9.

基金项目

国家科技创新2030—"新一代人工智能"重大项目(2021ZD0113603) (2021ZD0113603)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文