基于机器视觉和深度学习神经网络的焊缝质量智能评价技术研究OA
Research on Intelligent Evaluation Technology of Weld Quality based on Machine Vision and Deep Learning Neural Networks
针对传统宏观金相分析依赖于人工观察和经验判断,存在主观性强、效率低等问题,提出了一种融合机器视觉和深度学习神经网络的焊缝质量智能评价技术,通过构建深度学习目标检测模型和深度学习语义分割模型实现了对金相试样的自动检测和金相识别.实验结果表明,基于Faster RCNN网络的目标检测模型识别精度最高可达98.53%,基于HRNetV2网络的语义分割模型的平均交并比最高可达96.72%.深度学习模型能够从大量数据中学习复杂的特征,实现对焊缝宏观形貌和缺陷的智能评价.相比人工分析,该技术单图分析时间从30 s缩至1 s,检测效率提升5倍,检测成本降低60%,可满足批量检测需求,为宏观金相技术的自动化发展提供了新的思路.
Addressing the issues of strong subjectivity and low efficiency in traditional macro-level metallographic analysis,which relies on manual observation and experience-based judgment,a technology for intelligent evaluation of weld quality combining machine vision and deep learning neural networks is proposed.Through constructing a deep learning object de-tection model and a deep learning semantic segmentation model,automatic detection and identification of metallographic samples are realized.Experimental results show that the object detection model based on the Faster RCNN network has a recognition accuracy of up to 98.53%,and the semantic segmentation model based on the HRNetV2 network has an average intersection over union(IoU)of up to 96.72%.Deep learning models can learn complex features from a large amount of data,achieving intelligent evaluation of the macroscopic appearance and defects of welds.Compared with manual analysis,this technology reduces the analysis time per image from 30 seconds to 1 second,increasing detection efficiency by 5 times and reducing costs by 60%,meeting the requirements for batch detection,providing a new direction for the automated devel-opment of macro-level metallographic technology.
汪认;崔云龙;何建英;李刚卿;韩晓辉
中车青岛四方机车车辆股份有限公司,山东 青岛 266111中车青岛四方机车车辆股份有限公司,山东 青岛 266111中车青岛四方机车车辆股份有限公司,山东 青岛 266111中车青岛四方机车车辆股份有限公司,山东 青岛 266111中车青岛四方机车车辆股份有限公司,山东 青岛 266111||哈尔滨工业大学 先进焊接与连接国家重点实验室,黑龙江 哈尔滨 150001
矿业与冶金
宏观金相技术机器视觉深度学习神经网络图像分类
macroscopic examinationmachine visiondeep learningneural networkimage classification
《电焊机》 2025 (10)
77-85,9
评论