| 注册
首页|期刊导航|电讯技术|任务卸载位置隐私保护的强化学习算法

任务卸载位置隐私保护的强化学习算法

张鉴 韩言妮 安伟 陶涛 王学建 范东媛

电讯技术2025,Vol.65Issue(10):1595-1605,11.
电讯技术2025,Vol.65Issue(10):1595-1605,11.DOI:10.20079/j.issn.1001-893x.240325002

任务卸载位置隐私保护的强化学习算法

Reinforcement Learning Algorithm for Task Offloading with Location Privacy Protection

张鉴 1韩言妮 1安伟 1陶涛 2王学建 2范东媛2

作者信息

  • 1. 中国科学院信息工程研究所,北京 100093||中国科学院大学 网络空间安全学院,北京 100049||中国科学院网络空间安全防御重点实验室,北京 100093
  • 2. 中国移动信息技术中心,北京 100083
  • 折叠

摘要

Abstract

For the problem of location privacy leakage in edge computing task offloading,position K-anonymous technology is used for task offloading of intelligent terminal equipment to generate K-anonymous area,and terminal equipment task is offloaded through all terminal equipment in K-anonymous area,to protect the location privacy of terminal devices.A reinforcement learning based location privacy protection mechanism for task offloading(RL-LPTO)is proposed,which deploys Actor and Critic networks to optimize task offloading decisions while preserving location privacy.A dual-part Actor network structure is designed on each terminal device to enable both task forwarding and offloading decisions,facilitating agent training and optimizing latency and energy consumption.Simulation results show that the RL-LPTO algorithm reduces the performance cost of task offloading to 55%of the average cost of baseline algorithms,while effectively protecting location privacy.

关键词

边缘计算/位置隐私/K-匿名/任务卸载/强化学习

Key words

edge computing/location privacy/K-anonymity/task offloading/reinforcement learning

分类

信息技术与安全科学

引用本文复制引用

张鉴,韩言妮,安伟,陶涛,王学建,范东媛..任务卸载位置隐私保护的强化学习算法[J].电讯技术,2025,65(10):1595-1605,11.

基金项目

重庆市教育委员会在渝本科高校与中国科学院战略课题(HZ2021015) (HZ2021015)

电讯技术

OA北大核心

1001-893X

访问量0
|
下载量0
段落导航相关论文