| 注册
首页|期刊导航|电子学报|DFRNet:融合扩散-聚焦物理机制的语义分割模型研究

DFRNet:融合扩散-聚焦物理机制的语义分割模型研究

黄依莎 姜林 管亚菲 张亚莎 梁欣 曾伟豪 方晓萍

电子学报2025,Vol.53Issue(6):1755-1770,16.
电子学报2025,Vol.53Issue(6):1755-1770,16.DOI:10.12263/DZXB.20250186

DFRNet:融合扩散-聚焦物理机制的语义分割模型研究

DFRNet:A Semantic Segmentation Method Inspired with Physical Mechanism of Diffusion-Focus

黄依莎 1姜林 2管亚菲 1张亚莎 3梁欣 1曾伟豪 1方晓萍4

作者信息

  • 1. 湖南工商大学人工智能与先进计算学院,湖南 长沙 410000
  • 2. 湖南工商大学人工智能与先进计算学院,湖南 长沙 410000||湘江实验室,湖南 长沙 410000
  • 3. 湖南工商大学智能工程与制造学院,湖南 长沙 410000
  • 4. 湖南工商大学数学与统计学院,湖南 长沙 410000
  • 折叠

摘要

Abstract

To address the information loss induced by downsampling in image semantic segmentation tasks,as well as the widespread limitations of existing upsampling methods:such as inadequate global perception,blurred fine-grained re-construction,unstable generation processes,and redundant information handling in various scenarios,this paper proposes a lightweight semantic segmentation model,DFRNet,which incorporates a physics-inspired diffusion-focusing mechanism.Specifically,inspired by the surface tension of liquids,the model introduces a diffusion-focusing mechanism and designs a dynamic context window selection(DWS)module to optimize information flow,thereby implementing the physics-inspired energy propagation upsampling(PIEPU)framework.PIEPU comprises three core modules:diffusion,focusing,and regula-tion.These modules collaboratively enhance global contextual propagation,critical region feature reinforcement,and opti-mized information flow,thereby significantly improving fine-grained perception and semantic consistency across complex scenarios.Extensive experiments conducted on 14 datasets covering 7 semantic categories demonstrate that DFRNet consis-tently achieves superior performance over state-of-the-art methods in terms of mean intersection over union(mIoU),F1 score,and Accuracy.Specifically,mIoU improvements range from 0.165%to 4.259%,F1 score gains span 0.140%to 2.888%,and Accuracy enhancements vary from 0.035%to 1.386%across diverse datasets.These results validate the robust-ness and generalization capability of the proposed approach.Notably,DFRNet has a model size of only 3.34 MB,making it suitable for lightweight real-time applications.

关键词

语义分割/上采样/扩散-聚焦/全局上下文

Key words

semantic segmentation/upsampling/diffusion focus/global context

分类

信息技术与安全科学

引用本文复制引用

黄依莎,姜林,管亚菲,张亚莎,梁欣,曾伟豪,方晓萍..DFRNet:融合扩散-聚焦物理机制的语义分割模型研究[J].电子学报,2025,53(6):1755-1770,16.

基金项目

湘江实验室重大项目(No.23XJ01003,No.23XJ01009) (No.23XJ01003,No.23XJ01009)

湖南省教育厅科学研究重点项目(No.22A0441) Major Project of Xiangjiang Laboratory(No.23XJ01003,No.23XJ01009) (No.22A0441)

Key Scientific Re-search Project of Hunan Provincial Department of Education(No.22A0441) (No.22A0441)

电子学报

OA北大核心

0372-2112

访问量0
|
下载量0
段落导航相关论文