| 注册
首页|期刊导航|电力系统自动化|基于熵理论的低碳综合能源系统信息-能量耦合优化

基于熵理论的低碳综合能源系统信息-能量耦合优化

刘子铭 黄博南 王靖傲 王睿 孙秋野

电力系统自动化2025,Vol.49Issue(19):49-61,13.
电力系统自动化2025,Vol.49Issue(19):49-61,13.DOI:10.7500/AEPS20241023002

基于熵理论的低碳综合能源系统信息-能量耦合优化

Information-Energy Coupling Optimization of Low-carbon Integrated Energy System Based on Entropy Theory

刘子铭 1黄博南 1王靖傲 1王睿 1孙秋野2

作者信息

  • 1. 东北大学信息科学与工程学院,辽宁省沈阳市 110819
  • 2. 东北大学信息科学与工程学院,辽宁省沈阳市 110819||沈阳工业大学电气工程学院,辽宁省沈阳市 110870
  • 折叠

摘要

Abstract

With the increasing popularity of renewable energy sources(RESs),traditional integrated energy systems are transforming into low-carbon integrated energy systems(LCIES).However,compared with traditional electricity,there is no clear model for the quality and cost of electricity that explicitly considers the uncertainty of RES generation,which makes the low-cost and high-efficiency operation of LCIES more complex.To address this challenge,an analysis method based on the entropy theory is proposed to quantify the uncertainty cost and efficiency of RES generation.Firstly,an equivalent fuel cost model is proposed,which establishes the connection between the energy layer and the information layer,and equivalently quantifies the information cost of eliminating the uncertainty of RES.On this basis,the information energy quality coefficient is established by using the entropy theory to analyze the energy quality of RES.Finally,a fully distributed optimization algorithm based on neural dynamics is proposed to perform multi-objective optimization of cost and energy efficiency within LCIES.The simulation results verify the superiority of the proposed method in improving the energy efficiency and economy of the system.

关键词

信息熵/能量质量/效率分析/成本优化/低碳综合能源系统/可再生能源/不确性

Key words

information entropy/energy quality/efficiency analysis/cost optimization/low-carbon integrated energy system/renewable energy system/uncertainty

引用本文复制引用

刘子铭,黄博南,王靖傲,王睿,孙秋野..基于熵理论的低碳综合能源系统信息-能量耦合优化[J].电力系统自动化,2025,49(19):49-61,13.

基金项目

国家自然科学基金重点项目(62433013) (62433013)

国家自然科学基金面上项目(52377079) (52377079)

中央高校基本科研业务费专项资金资助项目(N2404001). This work is supported by National Natural Science Foundation of China(No.62433013,No.52377079)and Fundamental Research Funds for the Central Universities(No.N2404001). (N2404001)

电力系统自动化

OA北大核心

1000-1026

访问量0
|
下载量0
段落导航相关论文