| 注册
首页|期刊导航|湖北农业科学|基于机器视觉技术的辣椒果实炭疽病病害分级方法研究

基于机器视觉技术的辣椒果实炭疽病病害分级方法研究

邹玮 岳延滨 李莉婕 陈维榕 韩威 朱存洲

湖北农业科学2025,Vol.64Issue(8):17-23,7.
湖北农业科学2025,Vol.64Issue(8):17-23,7.DOI:10.14088/j.cnki.issn0439-8114.2025.08.003

基于机器视觉技术的辣椒果实炭疽病病害分级方法研究

Research on anthracnose disease grading method for pepper fruits based on machine vision technology

邹玮 1岳延滨 1李莉婕 1陈维榕 1韩威 1朱存洲1

作者信息

  • 1. 贵州省农业科技信息研究所,贵阳 550006
  • 折叠

摘要

Abstract

To address the issues of strong subjectivity and low detection efficiency in traditional pepper(Capsicum annuum L.)disease grading methods,this study proposed a machine vision-based semantic segmentation model for automated rapid grading and identifica-tion of anthracnose-infected pepper fruits.Under controlled enclosed environments,sunlight was simulated,and images of healthy fruits and four disease severity levels across different pepper varieties were collected.Principal component analysis was em-ployed to reduce redundant image features,extracting three key color components(Cb,Cr,R)with a cumulative contribution rate of 95%.Model 1(Decision Tree),model 2(Naive Bayes),model 3(SVM),and model 4(KNN)were trained.Model 1(Decision Tree)demonstrated the shortest training time and highest precision,establishing it as the optimal prediction model for anthracnose dis-ease grading.It required low computational resources and occupied minimal memory,facilitating future edge deployment.Model 1 achieved precision rates of 90.3%~98.2%for pepper fruits and 75.3%~80.7%for disease spots.Its recall rate for anthracnose disease grading was 73.3%~93.3%,with the recall rate for healthy peppers(Level 0)exceeding 90.0%.The prediction results of model 1 showed high consistency with manual annotations across all disease levels,verifying its applicability in automated disease monitoring systems as a replacement for manual visual grading methods.

关键词

辣椒(Capsicum annuum L.)果实/机器视觉技术/炭疽病/病害分级

Key words

pepper(Capsicum annuum L.)fruit/machine vision technology/anthracnose/disease grading

分类

信息技术与安全科学

引用本文复制引用

邹玮,岳延滨,李莉婕,陈维榕,韩威,朱存洲..基于机器视觉技术的辣椒果实炭疽病病害分级方法研究[J].湖北农业科学,2025,64(8):17-23,7.

基金项目

贵州省农业科学院青年基金项目(黔农科一般基金[2024]25号) (黔农科一般基金[2024]25号)

贵州省科技计划项目(黔科合支撑[2021]一般173) (黔科合支撑[2021]一般173)

湖北农业科学

0439-8114

访问量1
|
下载量0
段落导航相关论文